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Abstract  

In addition to the original Vaníček’s approach to the network’s robustness, the Tao’s approach is introduced. Two sets of three deformation measures at each point of the network are then created due to the two approaches. To differentiate one approach from the other, three statistical tests are proposed: (1). Displacements test examines the network as a whole to what extent the displacement vectors due to the two approaches are different, and is referred to as the global test of the network’s robustness between approaches. (2). Deformations test, on the other hand, investigates to what extent the deformation vectors at individual points are different, and is referred to as the local test of the network’s robustness between approaches. (3). Equivalence test examines the network as a whole for the statistical equalities between the corresponding deformation measures generated by the two approaches.

Furthermore, the spatial difference of the influential observables, the observations which cause the largest deformations at individual points, between approaches is discussed. 

1. Introduction

According to Vaníček et al.(1991, 2001), Every marginally undetected blunder belonging to an observation causes displacements and thereby incurring deformations at individual points of a network. Each undetected blunder gives rise to a displacement vector for a network. From which three deformation measures: mean strain, total shear and local differential rotation, at each point are constructed and the largest ones, in the senses of absolute values, are chosen to indicate its robustness in strain, shear, and rotation. A network is said to be robust if the influence of undetected blunders on estimated positions is slight. Conversely, if the influence is significant, the robustness of the network is weak. 
Seemkooei’s experiments (2001a,b) revealed that robustness and reliability are closely related by saying “the robustness parameters were affected by redundancy numbers. The largest robustness parameters were due to the observations with minimum redundancy numbers”. His experiments prompted Hsu and Li (2004) to derive the functional relationship between robustness and reliability by expressing a deformation measure at a point in terms of redundancy and marginally undetected blunder as well as the extent the point is tied to its adjacent points. The Taiwan GPS network revealed that large deformations tend to be found at points where the group redundancies are small, that the local components monopolize deformation measures at the perimeter stations of the network where very small redundancy numbers are found, and that the largest deformation at any point may be due to an observation not directly tied to the point of interest (Hsu and Li 2004).

In a slight different from the Vaníček’s approach, Tao (1992) suggested that a maximum displacement vector for a network can be formed by selecting the largest displacement (in the sense of absolute value) among the displacements that all undetected blunders generate at a point. The three deformation measures, evaluated from the maximum displacement vector, can be used to measure robustness at individual points as well. 
In order to differentiate one approach from the other, three statistical tests are proposed in this paper for inferring the statistical equalities between the two sets of the deformation measures generated by the two approaches mentioned above. 
Furthermore, the spatial distribution of the influential observables, the observations which cause the largest deformations at individual points, between approaches is discussed.
2. Deformation measures

Blunders in geodetic observations cause displacements at the individual points of a geodetic network, thereby inducing deformation. The robustness of a network is measured by its capability to resist deformation. A network is said to be robust if the deformations of the network points due to the undetectable blunders are small.

Let the 2D displacements of a point 
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then the deformation matrix at point 
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p

 is defined by (Vaníček et al. 1991, 2001)
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From the matrix 
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, three deformation measures (or primitives) are used at point 
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 (Vaníček et al. 1991, 2001); these are: 

Mean strain
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which describes the average contraction or extension at a point, and therefore can be regarded as a deformation in scale.

Total shear
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which is the geometric mean of pure shear 
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 and simple shear 
[image: image10.wmf])

(

2

1

x

v

y

u

¶

¶

+

¶

¶

=

u

. Pure shear spoils the separation between two lines; simple shear deforms the angle between two lines. Thus, the total shear reveals the deformation in a local configuration.  

Local twisting 

The differential rotation at the point of interest is described by
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This rotation can be further separated into two components — the block rotation 
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 and the local differential rotation
[image: image13.wmf]dw

. The former is common to the whole network and computed by
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where m denotes the number of deformed points. The local rotation at each point is
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which is used to describe the local twisting.

Thus, the robustness at a point is characterized by these three deformation measures – namely, robustness in scale, robustness in shape and robustness in twist.

3.  Evaluation of the deformation matrix

Consider the point 
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 and its adjacent points 
[image: image17.wmf]j

p



 EMBED Equation.3  [image: image18.wmf])
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. These t adjacent points are either all points connected by observations to the point 
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 or all points within a specified radius from the point of interest.  The displacement field of these (t+1) points can be fitted by two plane equations (Vaníček et al. 2001)
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where ai and bi are absolute terms, ui and vi are the vectors consisting of the displacement components of these (t + 1) points, 1 is a column vector having ones as components, and 
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Xi and 
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Yi are the vectors consisting of the x- and y-coordinate components, respectively, expressed relative to the point of interest.  Solving by least-squares for the unknown partial derivatives and absolute terms in Eq. (8) yields
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and
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where the 
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.  By taking the four estimates of the partial derivatives 
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 from Eqs. (9a) and (9b), the elements of the deformation matrix can be expressed by
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where the 
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 matrix is formed by eliminating the first row of the matrix 
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in Eq. (9a) or ( 9b).  

Now assume the network is composed of m unknown (deformed) points and has n observations (n>2m). In addition, let the observation k be allocated with redundancy number 
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, then the components of the deformation vector,
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, at the point 
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 due to the maximum undetected blunder in the kth observation can be evaluated by (Hsu and Li, 2004)
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where A is the design matrix of the network with (
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and zeros elsewhere. It is formed by an appropriate expansion of the diagonal matrix in Eq.(10) to cover the whole network. 
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, is the n-dimensional blunder vector, with 
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 being the marginally undetectable blunder in the observation k, 
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 is the a priori standard deviation of the observation k , and 
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 the value of the non-centrality parameter based on the choices of type I and II errors. 
Eq.(11) implies that deformations at a point due to an observation depends not only on the design matrix and weighting scheme of a network, namely the redundancy number, but also on the extent the point of interest is tied to its adjacent points.   
4. Vaníček’s approach

The basic idea of the Vaníček’s approach to the formation of three deformation measures at a point is to compute displacement vectors caused by all observations, from which all candidate measures at a point are formed. The basic equation is:
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 is the displacement vector due to the marginally undetectable blunder in the observation k. Every marginally undetectable blunder in an observation will result in a displacement vector,
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, of the network, and subsequently a deformation vector, 
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, at the point of interest, from which three deformation measures are formed. For a network, composed of m unknown (deformed) points and having n observations, there will be 3n deformation measures for each point. However, only the three measures with largest absolute values, namely
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, are used to describe the deformation at a point.

Eq.(12) indicates that one may view matrix Ti as the operator at a point which acts to transform a displacement vector of the network due to a marginally undetectable blunder into a deformation vector at the point of interest.

5. Tao’s approach 

Instead of computing 3n deformation measures for each point, Tao (1992) suggests to select the largest displacement vector of the network due to the n marginally undetectable blunders to compute the deformation vector at a point. Starting from the equation
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the largest displacement vector, 
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, is deliberately formed. Its components consist of the largest displacements caused by all undetectable blunders belonging to the observations 
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where 
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From which, the three deformation measures at a point are uniquely determined (because there is only one 
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for a network). 

The two approaches mentioned in sections 4 and 5 are basically the same in computing deformation measures. The only difference is that Vaníček uses every displacement vector to calculate three deformation measures at a point, while Tao employs only the largest displacement vector, which is hardly caused by a single undetectable blunder. One may call the Tao’s approach as the maximum displacement vector approach.

6. Three statistical tests

The two sets of the three deformation measures at a point are numerically unequal because of adopting different approaches. Somehow one has to develop a mechanism to judge, under what conditions, the differences between the two sets of the deformation measures are statistically insignificant. The simplest way is to use the equation 
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, the same deformation measures due to different approaches, are considered equal if the equation above is fulfilled. But such a technique is not sound statistically. Besides, it shows no spatial distribution of the influential observations (the observations which cause the largest deformations at individual points).

Let the difference between a pair of displacement vectors 
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If the observations are random, then the marginally undetectable blunders are also random, and hence
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 the a priori variance of the observation k. As an expedience, the marginally undetectable blunder is viewed as the random error of the observation k so that 
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6.1 Displacements test

The statistical difference between displacement vectors 
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where Eq.(18a) is used in right hand side of the equation above. If the observations of the network are assumed to have normal distribution, then 
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 has a chi-square distribution with u degrees of freedom. The null hypothesis for the test is Ho: 
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Since one has no clues as to which displacement vectors, 
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For an extensive network, consisted of a great number of unknown points, the degree of freedom, u, is so large that
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   Alternatively, one may use the F-statistic to perform the displacements test. Let 
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has a F-distribution with degrees of freedom (u-1,u-1). At significance level
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6.2 Deformations test 
Let the deformation vector at the point 
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From which the covariance matrix of 
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Now turn to the formation of the covariance matrix of the deformation measures vector at the point of interest. For the time being, we omit the subscript 
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It follows that the error of 
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 induced by the errors of e1 and e4 is 


[image: image174.wmf]11

14

22

ddede

J

=+


(26)
From the total shear equation, one obtains
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Therefore, the differential equation of Eq.(27) is
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From the equations of pure shear and simple shear, it follows that
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From equations (28), (29), and (30), the error in total shear due to the errors in e1, e2, e3, and e4 becomes
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where the deformation measures with subscript o in the equation above denote their approximate values. From the local twisting expression, it follows that the differential change in local twisting at point 
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Assume that the network has equal error in rotation everywhere, namely
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 is constant for all the points of the network, then Eq.(32) is reduced to
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Let 
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be the deformation measures vector at the point 
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 generated by the kth observation due to the Vaníček’s approach, whose components in sequence are mean strain, total shear, and local twisting, respectively, i.e., 
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where
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and 
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 are the approximate pure shear, simple shear, and total shear, at the point of interest, respectively. These approximate values are readily available since, at each point, one simply takes the values computed via the Vaníček’s approach or those via the Tao’s approach. 
Since the three deformation measures with largest absolute values are the indicators of robustness at a point, the algebraic signs of deformation measures must be retained in all the computations that follow.

At the point of interest, the difference of the two deformation measure vectors is 
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where the second term of the right-hand side of the equation above is due to the Tao’s approach. It follows that, by assuming uncorrelated 
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In the equation above, we assume that the Vaníček’s approach and the Tao’s approach have the same covariance matrix of the deformation vector, i.e., 
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The sample statistic to be used for the deformation test is


[image: image205.wmf]21

()

k

i

kTk

idi

dd

c

-

=S

c

cc

       
[image: image206.wmf]m

i

,

,

2

,

1

L

=

  
(38)
where 
[image: image207.wmf]max

kk

iii

d

=-

ccc

, and the covariance matrix of the vector  
[image: image208.wmf]k

i

d

c

 is


[image: image209.wmf]2

kk

ii

T

dii

=

c

e

Σ

G

Σ

G

 
(39)

with 
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being the covariance matrix of the deformation vector 
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For each point 
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[image: image224.wmf]k

i

c

and 
[image: image225.wmf]max

i

c

 (
[image: image226.wmf]n

k

,

,

2

,

1

L

=

). If the differences between pairs of 
[image: image227.wmf]k

i

c

and 
[image: image228.wmf]max

i

c

 (
[image: image229.wmf]n

k

,

,

2

,

1

L

=

) are all significant, then one concludes that, locally, the two approaches result in two different sets of the deformation measures at the point of interest. And there are (c/k) 100% differences at the point if the testing turns out c different pairs of 
[image: image230.wmf]k

i

c

and 
[image: image231.wmf]max

i

c

 (
[image: image232.wmf]n

k

,

,

2

,

1

L

=

). Of course, the deformations test may be regarded as the local test of the network’s robustness between approaches. 
6.3 Equivalence test

In the equivalence test, the deformation measures at all points of a network generated by the two approaches are to be compared for statistical equalities. Let 
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And the overall difference between 
[image: image259.wmf](

)

max

V

Sj

and 
[image: image260.wmf](

)

max

T

Sj

 is considered significant so that the mean strains of the network as a whole generated by the two approaches are not equivalent, not only algebraically but statistically also.
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 because the sum of two chi-square distributions with degree of freedom n1 and n2 , respectively, is again a chi-square distribution with degree of freedom (n1 + n2). In addition, the random variable 
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By definition, the t-statistic is
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By substituting variables Z,
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At significance level 
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where 
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. One then concludes that the means and variances in the normal density functions are both statistically equal, and that the two approaches produce equivalent deformation measures, 
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7. Spatial distribution of influential observations

The works in (Hsu and Li, 2004), where the Vaníček’s approach was applied to the Taiwan’s GPS network, indicate that the largest deformation measures at a point tend to be caused by the observations tied to the point of interest, i.e., the inner group observations(Hsu and Li, 2004). In particular, the inner group observations dominate the strong robustness in rotation. In addition, very large deformations occur at the perimeter stations where very small redundancy numbers are found among the observations connected them. These are basically the spatial features of the influential observations in the Taiwan’s GPS network when following the Vaníček’s approach.

In order to distinguish the spatial differences of the influential observables due to the two aforementioned approaches, let q be the number of observables that produce largest deformation measures at a point, s be the number of total observables that produce largest deformation measures at all points of the network, then it can be easily inferred that

	Vaníček’s approach      
[image: image296.wmf]3

q

¢

£

        
[image: image297.wmf]sn

¢

£


Tao’s approach          
[image: image298.wmf]qsn

¢¢¢¢

=£




It should be noted that s is not always the sum of all q’s because an observation is likely to produce the largest deformation measures at more than one point. The reason for 
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 in the Vaníček’s approach is that only the three largest deformation measures are required at each point. For this requirement, one can only choose at most three displacement vectors among the candidate 
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According to Hsu and Li (2004), 
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where R is the redundancy matrix, i.e.
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It follows that the components of 
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Eq.(48) demonstrates how the marginally undetectable blunder in the k-th observation contributes to
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. It is obvious that the larger the hk number (or the smaller the 
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 results. This fact seems to indicate that the components in the vector 
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Since the Tao’s approach has the advantage of postponing the computations of the deformation measures by ignoring 
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 matrix temporally on its way of forming 
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, Eq(15) seems to imply that the Tao’s approach has more tendency than the Vaníček’s approach to produce three largest deformation measures at a point by its inner group observations. The reason is that 
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at a point is most likely caused by its inner group observations with smaller redundancy number. Still, the observations with very small redundancy numbers found mostly at the perimeter of a network have some considerable influence on the robustness of the individual points. But the robustness out of the Vaníček’s approach has more impact from these perimeter observations.
Based of the inferences above, it seems sensible to say that the difference in the spatial pattern of a network’s robustness between the two approaches is considerably significant -- not only the magnitudes of the deformation measures, but also the spatial distribution of the influential observations.

8. Numerical example
The second-order GPS network in the mid-west region of Taiwan (Fig.1) was used to examine the differences between the two approaches discussed in the previous sections. The network has 193 base-line vectors and consists of 65 points, five of which are first-order GPS stations (M043, M044, M045, M049, M085) which were held fixed in the computations. The non-centrality parameter 
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 (1). Displacements test

At the significance level 
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When the sample statistic F according to Eq.(22) was employed, the differences between vector pairs of
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. Thus, the Vaníček’s approach and the Tao’s approach are two completely different creators of displacement vectors for the network under consideration. 
(2). Deformations test

Table 1 lists the deformation measures at each point of the network due to the Vaníček’s approach as well as the Tao’s approach. At the significance levels
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) are significant and hence statistically the two approaches generate different deformation measures at any points of the network. Table 1 also indicates that the Tao’s approach in general turns out larger mean strains, and total shears as well, than the Vaníček’s approach does. These facts are anticipatory due to the use of 
[image: image356.wmf]max

δ

X

. However, a Tao’s local-twisting is not predominately larger than its counterpart out of the Vaníček’s approach on account of Eq.(7). 

(3). Spatial distribution of influential observation 

As expected, the self-component (local-component) dominates the magnitude of the maximum displacements, 
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, the largest displacements in x-coordinate and y-coordinate at each point, in such a way that the larger the displacement, the more percentage the self-component shares. The percentage even reaches to more than 90% whenever the maximum displacements are due to the ten observations with smallest redundancies of the network, which are either perimeter base-lines or those far away from any fixed points of the network. These ten base-lines are only handful 5% share of the network’s observations, yet they exert up to 27 % influences on the deformation measures and 20% on the displacements (Table 2), far beyond their percentage share of the network’s observations. 

Moreover, as mentioned in section 7,
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 are mainly brought about by the inner group observations, 70% for 
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(Table 2), and these percentages are considerably higher than those largest deformation measures via the Vaníček’s approach, 55% for mean strain, 62% for total shear, and only 12% for local twisting.  

(4). Equivalence test 

The equivalent test (Table 3) shows that, except for the local differential rotation, the two approaches are not equivalent for the network as they fail both F-test and the 
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-test, as indicated by equations (41) and (45), at significance levels 
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. Thus, the two sets of the deformation measures, 
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, are statistically unequal. The variances of the individual deformation measures in Table 3 are rather large, indicating diverse magnitudes of deformation measures within a set 
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. Namely, deformation measures, extremely large and small as well, are concurrent.
9. Conclusions
 By forming a unique displacement vector for the network, Tao’s approach does have efficient advantage in the computation time. Yet, it tends to produce larger mean strains and total shears and hence lost its equivalence in the network’s robustness to the Vaníček’s approach due to the use of the maximum deformation vector. The deformation measures out of the two approaches are most of the times different not only statistically but spatially as well. The experiment conducted to the second-order GPS network in the mid-west region of Taiwan seems to verify our inferences above.
Since both approaches are theoretically sound, the preference of one approach to another is all up to the users. One would opt for the Vaníček’s approach if one is interested in examining the effects the individual observations made on the network’s deformation. On the other hand, one leans towards the Tao’s approach if one concerns only with the computational efficiency for a network’s deformation. 
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Fig.1 The second-order GPS network in the mid-west region of Taiwan.

Table 1. Deformation measures at individual points (ppm)
	Point


	Mean strain
	Total  shear
	Local twisting
	Point


	Mean strain
	Total  shear
	Local twisting
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	1
	1.225
	3.751
	0.852
	0.955
	2.608
	2.315
	31
	0.537
	1.234
	0.446
	1.003
	1.522
	1.160

	2
	0.717
	0.973
	1.244
	1.472
	3.935
	1.275
	32
	0.825
	0.133
	0.798
	1.176
	5.553
	1.880

	3
	0.662
	0.680
	0.392
	1.465
	2.200
	1.302
	33
	2.164
	4.084
	1.239
	0.841
	-0.829
	0.720

	4
	2.772
	5.054
	1.870
	2.831
	-1.556
	-0.514
	34
	0.526
	0.931
	0.579
	0.808
	2.132
	2.464

	5
	0.576
	1.515
	0.486
	0.781
	-0.674
	0.737
	35
	1.564
	-1.319
	2.553
	5.327
	-3.939
	3.764

	6
	0.943
	-0.889
	0.655
	1.137
	2.265
	2.161
	36
	1.175
	4.256
	1.575
	0.806
	-3.208
	-3.434

	7
	0.613
	2.304
	0.392
	0.085
	-0.783
	1.209
	37
	1.648
	-0.020
	1.852
	1.918
	-5.162
	-1.982

	8
	0.652
	0.250
	0.373
	0.655
	-0.363
	0.090
	38
	0.717
	0.973
	1.244
	1.472
	3.935
	1.275

	9
	0.526
	0.726
	0.487
	0.639
	2.265
	1.285
	39
	3.994
	0.052
	3.032
	2.339
	5.539
	4.996

	10
	1.062
	0.529
	1.782
	0.889
	-8.169
	-8.372
	40
	1.083
	1.383
	1.294
	1.701
	-3.674
	-5.650

	11
	0.679
	1.617
	0.468
	0.069
	0.902
	1.328
	41
	0.399
	1.300
	0.323
	0.715
	1.002
	1.677

	12
	0.758
	0.921
	0.467
	0.717
	0.930
	1.570
	42
	0.647
	0.975
	0.567
	0.436
	-0.515
	-0.355

	13
	12.000
	16.950
	6.423
	8.389
	-9.928
	-0.356
	43
	0.354
	0.189
	0.450
	0.538
	0.952
	0.516

	14
	0.434
	0.830
	0.362
	0.519
	1.149
	0.287
	44
	1.703
	2.225
	1.322
	1.095
	2.004
	1.418

	15
	0.564
	1.968
	0.755
	0.851
	-0.436
	0.589
	45
	1.020
	1.118
	0.593
	0.800
	-0.781
	-0.639

	16
	0.782
	0.862
	0.497
	1.126
	1.114
	1.648
	46
	0.645
	1.304
	0.452
	0.352
	1.801
	2.860

	17
	1.915
	-0.100
	2.303
	0.561
	-9.266
	-8.962
	47
	0.829
	0.976
	0.552
	0.685
	1.325
	-0.682

	18
	1.707
	2.874
	1.365
	1.497
	1.642
	0.813
	48
	0.712
	2.257
	0.677
	0.801
	2.284
	3.725

	19
	2.234
	1.766
	2.661
	4.767
	4.805
	4.107
	49
	2.376
	2.542
	3.167
	3.496
	4.321
	3.983

	20
	0.394
	-0.743
	0.295
	0.435
	1.830
	2.308
	50
	1.287
	1.084
	1.910
	0.948
	-8.527
	-8.128

	21
	2.084
	5.562
	1.807
	3.865
	4.260
	-1.731
	51
	0.342
	-0.055
	0.299
	0.298
	-0.534
	-0.363

	22
	0.325
	0.745
	0.304
	1.016
	1.162
	0.993
	52
	1.200
	1.182
	0.771
	1.285
	-0.730
	0.054

	23
	0.570
	0.767
	0.385
	0.363
	-0.272
	0.276
	53
	0.352
	-0.046
	0.304
	0.041
	1.336
	1.471

	24
	4.720
	8.630
	3.038
	2.553
	-5.753
	-4.751
	54
	0.427
	0.933
	0.312
	0.580
	-0.385
	0.315

	25
	0.469
	1.068
	0.457
	0.691
	-0.669
	-1.193
	55
	0.474
	2.060
	0.339
	0.323
	1.444
	2.374

	26
	3.298
	8.090
	3.160
	4.515
	3.878
	-2.136
	56
	1.310
	2.816
	1.502
	2.567
	-3.092
	0.112

	27
	0.240
	0.513
	0.265
	0.435
	-0.517
	-0.067
	57
	1.262
	4.621
	1.743
	2.592
	3.401
	-1.749

	28
	0.860
	-0.336
	0.742
	1.586
	2.267
	1.539
	58
	4.339
	-0.459
	2.739
	6.228
	-7.940
	-11.850

	29
	1.995
	4.239
	1.659
	1.943
	1.929
	2.368
	59
	0.543
	1.077
	0.477
	1.035
	1.299
	1.136

	30
	0.483
	1.159
	0.448
	0.686
	-0.921
	-1.357
	60
	0.445
	-0.282
	0.422
	0.246
	-0.368
	0.168


Note: Algebraic signs of deformation measures are retained.
Table 2. The percentages of the influential observations
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	A
	55%
	62%
	12%
	70%
	85%

	B
	20%
	27%
	25%
	20%
	18%


A: due to inner group observations
B: due to the ten observations with smallest redundancies
Table 3. The equivalence tests of deformation measures
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	Mean
	1.35E-06
	1.83E-06
	1.17E-06
	1.50E-06
	1.00E-11
	-4.87E-11

	Variance
	2.94E-12
	7.69E-12
	1.21E-12
	2.55E-12
	1.28E-11
	1.02E-11

	F
	2.618
	2.109
	1.249

	t
	1.125
	1.321
	0.000


Algebraic signs were retained in the computations of means and variances.
� Correspondence to Hsu-Chih Lee
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