
Journal of the Chinese Institute of Engineers, Vol. 28, No. 2, pp. 281-291 (2005) 281

NUMERICAL PREDICTIONS ON THE DYNAMIC RESPONSE

OF A SUSPENSION BRIDGE WITH A TRAPEZOIDAL

CROSS-SECTION

Fuh-Min Fang*, Yi-Chao Li, Chu-Chang Chen, Tsung-Chi Liang, and Jwo-Hua Chen

ABSTRACT

A numerical method is developed to predict the dynamic behavior of a suspen-
sion bridge under wind action in a two dimensional sense.  In particular, the behavior
of a vibrating deck with a trapezoidal cross-section is examined.  The simulations
contain two parts of computations, which are performed alternatively during the cal-
culation process. The solutions of the instantaneous flow field and the deck motions
are considered the basis to analyze the problem of deck instability.

Wind tunnel measurements are conducted in parallel to measure the response of
a sectional bridge model.  The vertical and torsional deflections of the model are
measured under various wind speeds with several selected attack angles.  The results
are used to confirm the accuracy of the numerical predictions.

Results show that the numerical predictions of the structural response agree well
with those from the experiments, indicating that the proposed method is capable of
predicting the deck motion with good accuracy.  Based on the time-series numerical
results, finally, the interactive behavior of the vibrating trapezoidal deck is examined
extensively.
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model, flutter derivatives.
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I.  INTRODUCTION

The instability of a suspension bridge under
wind act ion is  an important  subject  in  wind
engineering.  In order to investigate the dynamic mo-
tion of the bridge deck as well as the corresponding
wind effects, the method of model experiments is
commonly used.  Economically, however, the appli-
cation of appropriate numerical methods can be an-
other option.  In addition, the numerical results can
provide more extensive information for the analysis
of such flow-structure interactive problems.

A number of researchers have investigated ex-
perimentally the mechanisms of wind-induced

vibration of suspension bridges.  Typically, Scanlan
and Tomko (1971) proposed a semi-experimental and
semi -ana ly t i ca l  app roach  r ega rd ing  f lu t t e r
derivatives, and this approach is presently widely
used.  Sarkar et al. (1992) suggested a system identi-
fication procedure to estimate all the flutter deriva-
tives simultaneously.  In their study, numerical simu-
lations and reduction of the experimentally obtained
direct derivatives are presented.  Iwamoto and Fujino
(1995) proposed a method of simultaneous identifi-
cation of all eight flutter derivatives of bridge decks
from free vibration data consisting of two modes.  It
is shown by experiments that an increase of mass and
inertial moment of section model leads to better ac-
curacy in identifying the flutter derivatives at high
wind speeds.  Based on the experimental results from
a coupled vertical-torsional free vibration of a spring-
suspended section model, Gu et al. (2000) employed
the least-square theory and proposed an identifica-
tion method to obtain flutter derivatives.  Moreover,
Noda et al. (2003) evaluated the flutter derivatives
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of thin rectangular cylinders and found that the ef-
fect of oscillation amplitudes could be significant.

Besides wind tunnel tests, the application of
computational fluid dynamics (CFD) is another way
to  assess  the  aerodynamic  performance and
aeroelastic stability of long span bridges.  Kuroda
(1997) presented a numerical simulation of high-
Reynolds-number flows past a fixed section model
with a shallow hexagonal cross-section.  The overall
characteristics of measured static force coefficients
were well captured by the computations.  Lee et al.
(1997) investigated numerically the wind loading
characteristics for turbulent flows over a two-dimen-
sional bridge deck cross-section.  The two-dimen-
sional flow results were further used to perform three-
dimensional dynamic structural analyses on a non-
interactive basis.  Fang et al. (2001) brought up a nu-
merical method to simulate the surrounding flow and
to predict the corresponding dynamic responses of a
bridge deck with a rectangular cross-section.  By em-
ploying a partially interactive procedure, the dynamic
responses of the deck agreed well with the measure-
ment results when the torsional responses were rela-
tively insignificant.

In the study, a numerical model is proposed to
simulate the dynamic response of a suspended bridge
in a two-dimensional sense.  Particularly, a bridge
deck with a trapezoidal cross-section is assessed.  In
the numerical computations, two sets of equations,
one for the simulation of the unsteady surrounding
turbulent flow and the other for the calculation of the
vibrating motions of the bridge deck, are solved al-
ternatively to reflect the interaction effect between
the structure and the flow by a completely interac-
tive procedure.  The resulting time-series responses
of the structure as well as the wind loads are ana-
lyzed to examine the dynamic behaviors of the two.
To verify the accuracy of the numerical results, on
the other hand, wind tunnel experiments are con-
ducted on a sectional deck model and the results of
the vertical and torsional motions of the deck are used
to confirm the numerical predictions.

Figure 1 depicts the schematic of the problem.
The width of the upper surface of the trapezoid (B) is
five times of the deck thickness (D).  The mass dis-
tribution of the bridge cross-section is assumed

uniform.  Therefore, the effect due to eccentricity is
not of concern.  The inclined angle (θ) associated with
the side surfaces of the trapezoidal deck cross-sec-
tion is selected typically as 45°.  With five attack
angles (β; 0°, ±5° and ±10°), the approaching flow is
considered smooth and the speed (U) varies from 2
to about 21.6 m/s (2 to 18 m/s for model experiments).
Other related properties of the bridge deck are de-
scribed in Table 1.

II.  NUMERICAL METHOD

The simulations contain two parts of computa-
tions and are performed according to an interactive
procedure.  To predict the unsteady turbulent flow
around the deck, a weakly-compressible-flow method
(Song and Yuan, 1988) together with a dynamic
subgrid-scale turbulence model (Germano et al.,
1991) is applied.  After an instantaneous flow field is
simulated, the resulting pressure distribution on the
deck surfaces is integrated to obtain the wind load,
which is taken as an input to further compute the cor-
responding structure responses.  The resulting deflec-
tions and the vibrating speeds of the deck are then
fed back to the boundary specifications of the deck
surfaces for the flow calculations in the following
time step.  The alternative solutions of the instanta-
neous flow field and the deck motions in time series
are considered to be the results of the interactive dy-
namic behaviors of the two.

1. Flow Calculations

In the weakly-compressible-flow method (Song
and Yuan, 1988), the continuity and momentum equa-
tions are

Table 1  Related properties of present section model

Fundamental frequency Damping ratio
Moment of

Mass (M) (Hz) (%) U
inertia (I) β

(kg/m) Vertical Torsional Vertical Torsional (m/s)
(kg-m2/m)

(fV) ( fT) (ξV) (ξT)

0.472 6.31×10–4 14.8 28.4 0.80 0.70 0°, ±5°, ±10° 2-18

Fig. 1  Sketch of problem
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∂p
∂t + k∇ ⋅ V = 0 (1)

∂V
∂t + V⋅ ∇ V = – ∇ p

ρ + ∇ ⋅ [(ν + ν t)∇ V] (2)

where p, V and t denote respectively pressure, veloc-
ity and time; k is the bulk modulus of elasticity of
air.  v and vt are respectively the laminar and turbu-
lent viscosities, and the latter is determined based on
a dynamic subgrid-scale turbulence model (Germano
et al., 1991).  These two equations are further trans-
formed into a coordinate system which goes with the
motions of the bridge deck.  Accordingly, as the co-
ordinate systems are related by

X=xcosα+ysinα

Y = ycosα – xsinα – yvdt (3)

where (X, Y) and (x, y) are the spatial coordinates as-
sociated respectively with the new (moving) and the
original (fixed) coordinate systems; yv and α  denote
the vertical and torsional deflections of the deck; yv,
α , are respectively the corresponding speeds in the
vertical (cross-wind) and torsional directions, Eqs. (1)
and (2) become

∂p
∂t

+ k[( ∂u
∂X

+ ∂v
∂Y

)cosα + ( ∂u
∂Y

– ∂v
∂X

)sinα]

+
∂p
∂X

(– αxsinα – αycosα)

+
∂p
∂Y

(– αysinα + αxcosα – yv) = 0 (4)

X-direction:

∂u
∂t + (u ∂u

∂X
+ v∂u

∂Y
)cosα + (u ∂u

∂Y
– v ∂u

∂X
)sinα

+ [ ∂u
∂X

(– αxsinα – αycosα)

+ ∂u
∂Y

(– αysinα + αxcosα – yv)]

= – [∂p
∂X

cosα + ∂p
∂Y

sinα] + (ν + ν t)(
∂2u
∂X2 + ∂2u

∂Y 2 )

(5a)

Y-direction:

∂v
∂t

+ (u ∂v
∂X

+v ∂v
∂Y

)cosα +(u ∂v
∂Y

–v ∂v
∂X

)sinα

+ [ ∂v
∂X (– αxsinα – αycosα)

+ ∂v
∂Y (– αysinα + αxcosα – yv)]

= – [
∂p
∂X (– sinα) +

∂p
∂Y cosα] + (v + vt)(

∂2v
∂X2 + ∂2v

∂Y 2 )

(5b)

Based on Eqs. (4) and (5), the computation of
the flow proceeds according to a finite-volume ap-
proach with an explicit finite-difference scheme.  To
ensure numerical stability, the time increment in the
unsteady calculations is limited by the Courant-
Friedrich-Lewy criterion (Courant et al., 1967).

In the flow calculations, appropriate values of
pressures and velocities are specified at exterior
(phantom) grids outside the boundaries of the com-
putational domain to reflect the physical nature of
the boundaries.  For the velocity specifications, since
the computation is based on a non-stationary coordi-
nate system, the boundary specifications at the
deck surfaces have to account for the effect due to
the instantaneous motion of the bridge deck.  At the
upstream inlet boundary, a smooth and uniform ve-
locity profile together with an additional velocity
caused by the coordinate transformations is imposed.
At the other penetrable boundaries (side and exit
boundaries of the flow domain), zero-gradient bound-
ary specifications with a similar treatment due to
the coordinate transformations are adopted.  For the
pressure specifications, on the other hand, the aver-
age pressure at the downstream section of the flow
domain is chosen as the reference pressure.  At the
other penetrable and solid boundaries, the values at
the phantom cells are given according to a zero-gra-
dient assumption in the direction normal to the
boundaries.

In all cases, the domain of flow calculations is
in a rectangular shape (38D×16D with a grid size of
242×88; see a typical mesh system in Fig. 2).  The
distances between the deck surfaces and the inlet as
well as the exit are respectively 8D and 24D, and a
space of at least 7D is set between the deck and the
side boundaries of the flow domain.  By using these
selections, preliminary numerical tests have shown
that the relative error of the computational results is
less than 2% (see Results).

10

5

0

-5

-10
-10 0 10

x/D
20

y/
D

Fig. 2 Typical mesh system and domain of flow computations
(β=0°)
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2. Calculation of Bridge Responses

In the computations of the deck motions, the dy-
namic equations in the vertical (cross-wind) and tor-
sional directions are respectively

yv + 2ξ vωvyv + ωv
2yv =

FL
M

(6)

α + 2ξ TωTα + ωT
2α =

FM
I

(7)

where yv and α  are the accelerations; M and I denote
the mass and moment of inertia of the deck cross-
section; FL and FM, obtained from the results of flow
calculations, are respectively the wind loads in the
cross-wind and torsional directions; ξ’s and ω’s de-
note the damping ratios and circular frequencies of
the deck.

3. Flutter Derivatives

In the calculations of the deck responses, the
forces induced by the deck motion are also examined
in detail (see Discussion).  For a 2-degree-of-free-
dom bridge deck, the lift and moment loads exerted
on an oscillating bridge section induced by the verti-
cal and torsional motions are given by the following
equations (Scanlan and Tomko, 1971)

(FL) I = ρU2B KH1
* yv
U + KH2

* Bα
U + K2H3

*α + K2H4
* yv

B

(8)

(FM) I = ρU2B2 KA1
* yv
U + KA2

* Bα
U + K2A3

*α + K2A4
* yv

B

(9)

where K=2πfvB/U; B is the deck width; H j
*  and A j

*

(j=1 to 4) are the flutter derivatives.
Based on the time-series results of the numeri-

cal calculations, the flutter derivatives are obtained
by the logarithmic-decrement method (Scanlan and
Tomko, 1971) in this study.  In addition, the initial
vertical and torsional amplitudes of the bridge deck
are selected respectively as 0.25D and 1.3°, which
are considered reasonably small to avoid the ampli-
tude effects (Noda et al., 2003).

III.  EXPERIMENTAL PROGRAM

A sectional deck model is installed on a sus-
pended rack mechanism (see Fig. 3) in the test sec-
tion (80 cm×80 cm) of a wind tunnel.  The turbulence
level (intensity) of the approaching flows in the tests
is less than 0.5%.  The thickness (D) and width
(B) of the upper surface of the deck model are

respectively 0.03 m and 0.15 m.  (The blockage ratio
is below 4%.)  An additional energy absorber, filled
with a viscous liquid, is set to produce appropriate
damping in the vertical and torsional directions.  Hot-
film anemometry is used to measure the approaching
flow speed.  Moreover, four laser transducers are set
on the rack mechanism to monitor the motion of the
vibrating model deck. Other related physical quanti-
ties are illustrated in Table 1.

IV.  RESULTS

1. Relative Error Resulting from the Selected Do-
main and Meshes in Flow Computations

To investigate the accuracy of the result of flow
calculations by using the selected computational do-
main and meshes (38D×16D with a grid size of
242×88), an additional flow calculation was performed
in a larger computational domain and finer meshes
(70D×32D with a grid size of 424×216) for a trap-
ezoidal deck with a zero attack angle (β=0) at a typi-
cal approaching flow speed (U=7.4 m/s).  The com-
parisons in Table 2 show that the relative errors of
the resulting mean and root-mean-square force coef-
ficients in the vertical and torsional directions (CL=
FL/ρU2B and CM=FM/ρU2B2; “–” and “’” denote the
mean and the root-mean-square values) are within 2%.

2. Verification of the Numerical Method

Figure 4 shows the comparisons of the root-mean-
square values of the vertical and torsional deck deflec-
tions at various approaching wind speeds.  It is noted
that the figures are also presented in terms of the re-
duced velocities associated with the fundamental fre-
quency in the cross-wind direction (Ur=U/(fvB)).  It can
be seen that a good agreement between the results of
measurements and numerical predictions is obtained.

In addition to those from the present section
model experiments, available data from three other
wind tunnel measurements are selected and compared
with the results from the numerical predictions.
Among the selected cases, Case 1 is associated with

Fig. 3  Experimental setup
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a rectangular deck shape (Noda et al., 2003); Cases 2
(Gu et al., 2000) and 3 (Iwamoto and Fujino, 1995)
are in relation to hexagonal cross-sections (see Table
3 for deck properties).

Compared to the experimental results from Noda
et al. (2003), Fig. 5 shows the calculated variations

of normalized mean force coefficients with respect
to the attack angles (CL=FL /ρU2B and CM=FM /ρU2B2;
FL  and FM  are respectively the mean wind loads in
the cross-wind and torsional directions).  Fig. 6 il-
lustrates the comparisons of the normalized mean and
fluctuating pressure distributions along the upper

Table 2  Comparison of the results of flow calculations

Domain and meshes 38D×16D 70D×32D Relative error
Variables 242×88 meshes 424×216 meshes (%)

CL -0.308 -0.307 0.33
CL′ 0.350 0.352 0.57
CM 0.098 0.099 1.01
CM′ 0.392 0.393 0.25

Fig. 4  Root-mean-square deflections at various wind speeds
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Table 3  Related properties of other experiments

Fundamental frequency Damping ratio
Moment of

Mass (M) (Hz) (%)
inertia (I)

(kg/m) Vertical Torsional Vertical Torsional
(kg-m2/m)

(fV) ( fT) (ξV) (ξT)

Case 1*   4.01 (Noda et al., 2003) 0.0706 10.31 29.7 0.81 0.66
Case 2**   4.19 (Gu et al., 2000) 0.0612 2.55 5.06 1.72 1.82
Case 3*** 11.93 (Iwamoto and 0.091 1.875 3.624 0.5 0.4

           Fujino, 1995)
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surface of the rectangular deck ( Cp =(p–po)/(0.5ρU2)
and Cp′=p′ /(0.5ρU2); po is the approaching-flow pres-
sure and p′  is the root-mean-square value of local
pressure).  Additionally, Fig. 7 depicts the compari-
sons of flutter derivatives.  All the results reveal that
the deck motions are well predicted.

Considering the occurrence of flutter, on the
other hand, Table 4 shows that the predicted critical
speeds (Ucr) are in good agreement with those from
the experiments (Gu et al., 2000; Iwamoto and Fujino,
1995), indicating again that the proposed numerical
method is capable of predicting the deck motions with
good accuracy.

3. Deck Responses

For the present trapezoidal bridge deck, Fig. 4
shows that the root-mean-square deflections in both
directions increase as the wind speed (or the reduced
velocity) increases, except when two resonances
occur (as U reaches 7.4 m/s and 10.6 m/s), leading to
the occurrence of local peak values.  To avoid damage
of the deck model, unfortunately, the wind speed in

the experiments is limited to about 18 m/s.  The nu-
merical results, however, show that the root-mean-square
deflections increase dramatically as the wind speed
exceeds about 21.0 m/s.  When U is about 21.6 m/s,
numerical predictions show that the fluctuating responses
in both the directions diverge, indicating the occurrence
of flutter.  Fig. 8 shows the variation of the resulting
critical speeds (Ucr) at various attack angles.  It ap-
pears that the effect of β is mild.

Evidence in Fig. 4 also shows that when β=0°
the largest deflected responses are produced; the sec-
ond largest deflections are found as the attack angle
is -10° and the smallest responses occur at an attack
angle of 5°.

4. Wind Loads

Based on the numerical results, normalized root-
mean-square force coefficients in the cross-wind (lift)
and torsional directions are shown in Fig. 9 for cases
with and without the effect of interactions, in which
calculations, in the latter cases, were performed based
on a non-interactive procedure.  Without considering
the effect of interaction, first, the normalized root-
mean-square force coefficients remain constant in

-1.5

-1.0

-0.5

0.0
0 5

xt /D

(a)

Experimental (Noda et al., 2003)
Calculated

B=13D
D

U

po

xt

10 13

C
p

0.3

0.2

0.1

0.0
0 5

xt /D

(b)

Experimental (Noda et al., 2003)
Calculated

10 13

'
C

p

Fig. 6 Comparisons of mean and root-mean-square pressure co-
efficients

Fig. 5  Comparisons of mean force coefficients
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both the cross-wind and torsional directions.
However, discrepancies are found at various attack
angles.  Among all the cases, the one with a zero at-
tack angle (β=0°) results in the lowest values (CL′=
0.126 and CM′=0.134), while the largest values (CL′=
0.301 and CM′=0.319) are found when β is equal to
5°.  In the interactive cases, on the other hand, the
fluctuating force coefficients associated with both the
cross-wind and torsional directions generally increase

mildly at low wind speeds then tend to constant val-
ues as the wind speed increases.  Moreover, the ef-
fect due to a change of the attack angle appears
insignificant, except that the largest values occur in
the case of a zero attack angle.

Fig. 8  Calculated critical flutter velocities at various attack angles
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Fig. 9 Calculated root-mean-square aerodynamic force coeffi-
cients at various wind speeds

Table 4 Comparisons of the resulting critical flut-
ter velocity

Critical flutter velocity (Ucr)
(m/s)

Experimental Calculated

Case 2 19.5 19.65
(Gu et al., 2000)
Case 3 (Iwamoto and 16.5 16.65
Fujino, 1995)

Fig. 7  Comparisons of flutter derivatives
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Fig. 10 Calculated normalized force frequencies at various wind
speeds

Fig. 11  Calculated net damping ratios at various wind speeds

To further investigate the effect of interaction
on the wind loads, calculated normalized frequencies
(fL and fM) associated respectively with the wind loads
in the cross-wind and torsional directions are plotted
in relation to the corresponding wind speeds (see Fig.
10).  Generally, fL and fM decrease as U increases at
low approaching speeds.  When U reaches 7.4 m/s
and 10.6 m/s, the normalized force frequencies match
with the fundamental reduced frequencies (the recip-
rocals of 3.33 and 4.77) of the deck respectively in
the vertical and torsional directions, indicating the
occurrence of resonance in the corresponding
direction.  After exceeding the corresponding reso-
nance wind speeds, fL and fM overshoot to smaller
values compared to the non-interactive ones (0.3 and
0.4 respectively in the cross-wind and torsional
directions) then gradually approach to the non-inter-
active values.  Besides, the dependence on the attack
angle appears mild within this high-speed range.

5. Aerodynamic Damping

Based on the numerical results, Fig. 11 shows
the variations of the net damping ratios at various

approaching wind speeds.  In the cross-wind direc-
tion (Fig. 11a), the variations of the net damping ra-
tios start from the value of the material damping
(0.8%) then increase with an increase of the wind speed.
Also, the effect due to the change of β appears
insignificant. In the torsional direction, in contrast,
the variation pattern of the net damping ratios appears
rather different.  Peak values are detected in the range
between the two resonance speeds.  As the wind speed
is about 19 m/s, the net damping ratios become less
than the material damping (0.7%).  Finally, they drop
to zero values as U approaches about 21.6 m/s.  Among
all the cases, furthermore, the one with a zero attack
angle results in the lowest net damping.

6. Flutter Derivatives

Figure 12 shows the f lut ter  derivat ives,
typically, as β is equal to zero.  It can be seen that
those related to the aeroelastic force in the cross-wind
direction (H1

* to H4
*) are all negative (Fig. 12a).  In

the torsional direction, on the other hand, all deriva-
tives are positive except the one associated with the
torsional speed (A2

*), which is initially negative at
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lower wind speeds then becomes positive when U
exceeds 19.0 m/s.

V. DISCUSSION

As the results from the measurements are treated
as the prototype data for verifications, the applica-
tion of the proposed numerical method has been
proved to be quite successful in predicting the dy-
namic behaviors of the deck and the surrounding flow,
which are actually interacting with each other.  The
variations of the root-mean-square deflections are
well predicted (Fig. 4), even when resonances and
flutter occur.  Moreover, other important features as-
sociated with the deck motion (such as the character-
istics of the wind forces, flutter derivatives and net
damping ratios) are obtained.  The good comparisons
in Figs. 4 to 7 demonstrate the applicability of the
proposed numerical method.

An important achievement in the proposed nu-
merical method is the adoption of the coordinate trans-
formation, which allows for execution of flow calcu-
lations on a fixed grid system.  This is considered a
major improvement in the weakly-compressible-flow
method because it leads to not only significant

savings of computing time for grid generations in flow
calculations but also avoidance of certain technical
difficulties in the application of the dynamic turbu-
lence model.  A previous work carried out by Fang et
al. (2001) used a partial interactive approach to simu-
late the response of a bridge deck with a rectangular
cross-section.  In their work, as the torsional responses
were relatively insignificant (since the torsional stiff-
ness was quite large), the coordinate transformation
considered solely the part due to the cross-wind
vibrations.  Considering the interaction effect con-
tributed by torsional motions of the deck, on the other
hand, the boundary conditions at the deck surface were
specified in such a way that the effect of vibrating
angular velocities were physically reflected.  To ex-
amine the difference of the predicted results between
the previous (partially interactive procedure) and the
present (completely interactive procedure) methods,
additional numerical calculations were performed
typically in the case of a zero attack angle.  In terms
of the root-mean-square cross-wind and torsional
deflections, Fig. 13 shows that the predictions based
on the present method with an interactive procedure
are the closest to the experimental results.  Meanwhile,
Fig. 13 also reveals that the results from the non-in-
teractive procedure lead to the largest errors since the
effect of interaction is not included.  As the interac-
tion effect is partially reflected, the results are un-
der-predicted by an order of 10% at a large wind speed.

Examinations on the tendency of the variations
of root-mean-square deflections in Fig. 4 reveal that
the fluctuating responses in both directions increase
generally with an increase of the approaching speed.
As U approaches 7.4 and 10.6 m/s, the peak responses
are obtained obviously due to the occurrence of reso-
nance (or the effect of vortex-induced vibration).  At
these two wind speeds, additional evidence in Fig. 10
shows that the force frequency in each direction matches
with that of the corresponding fundamental frequency.

In the present case of study, the mechanism of
the occurrence of flutter can be explored by examin-
ing the variations of the net damping ratios.  Fig. 11a
shows that the net damping in the translation mode
(vertical or cross-wind direction) is always larger than
the material damping. (The same evidence can also
be detected in Fig. 12a, which shows all negative H1

*

values in the entire range of U.)  By investigating the
result in Fig. 11b, on the other hand, it can be seen
that the net damping in the rotational mode (torsional
direction) drops to zero at the critical speed.
Accordingly, one can then conclude that although the
fluctuating responses diverge in both directions (Fig.
4) at the critical flutter speeds, the instability of the
deck is in reality initiated by torsional flutter.  It is
also noted that the net torsional damping becomes
identical to that of the material damping as U is about

Fig. 12  Calculated flutter derivatives at various wind speeds (β=0°)
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19 m/s, corresponding to the instant that A2
* changes

its sign (Fig. 12b).  In addition, the reason why the
largest fluctuating rotational response is found as β=0°
can be explained based on the result in Fig. 11b, which
shows the smallest net damping at the zero attack angle.

The fact that the most significant fluctuating
responses are detected at a zero attack angle (Fig. 4)
is quite interesting since its corresponding non-inter-
active fluctuating wind forces are minimum (Fig. 9).
A similar concern is found in the case of the 5° at-
tack angle, on the other hand, with an opposite
outcome.  Based on the numerical results, extensive
examinations on the individual parts of the aeroelastic
force in the vertical direction (associated respectively
with H1

* to H4
*) are depicted in Fig. 14 for cases of

the two attack angles (0° and 5°).  In addition, the
combined forces, resulting from the total aeroelastic
forces minus the ones associated with H1

*, are also
presented.  It can be seen that the combined forces,
which are responsible for promoting the fluctuating
responses of the deck, are mainly contributed by the
part associated with H2

*.  With roughly the same net
damping (see Fig. 11a), as the combined areoelastic

force induced by the deck motion at a zero attack
angle is greater than that of the case as β=5°, the cor-
responding fluctuating responses of the former case
therefore become larger.

VI.  CONCLUSION

The proposed numerical model has been proved
to be adequate in predicting the wind effects as well
as the dynamic behavior of a suspension bridge with
a trapezoidal cross-section.  By introducing the tech-
nique of coordinate transformations in the governing
equations of flow calculations, the computations are
performed without the application of a dynamic grid
system.  This indeed improves the computation effi-
ciency substantially.  Finally, besides the predictions
of the deck responses, the interaction mechanism of
the vibrating bridge deck is discussed extensively
based on the numerical results.
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NOMENCLATURE

B width of deck upper surface
CL, CM mean lift and moment coefficients
CL′ , CM′ fluctuating lift and moment coefficients
Cp , Cp′ mean and root-mean-square pressure co-

efficients
D deck thickness
FL, FM wind loads in the cross-wind and tor-

sional directions
(FL)I, (FM)I aeroelastic forces in the cross-wind and

torsional directions
fL, fM normalized force frequencies
fV, fT fundamental frequencies of deck in the

cross-wind and torsional directions
Hj

*, Aj
* flutter derivatives

I moment of inertia of deck
K 2πfVB/U
k bulk modulus of elasticity
M mass of deck
p pressure
U approaching-flow speed
Ur reduced velocity
Ucr critical flutter velocity
u, v velocity components
X, Y moving spatial coordinates
x, y original spatial coordinates
yv deck deflection in the cross-wind direc-

tion
yv speed of deck vibration in the cross-

wind direction
yv acceleration of deck vibration in the

cross-wind direction
yv′ root-mean-square deck deflection in the

cross-wind direction
α deck deflection in the torsional direction
α speed of deck vibration in the torsional

direction
α acceleration of deck vibration in the tor-

sional direction
α′ root-mean-square deck deflection in the

torsional direction
β attack angle
θ inclined angle of deck side surfaces
ρ fluid density
ωV, ωT circular frequencies
ξV, ξT material damping ratios
v, vt absolute and turbulent viscosities
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