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A Comparative Study on Shadow Compensation of
Color Aerial Images in Invariant Color Models

Victor J. D. Tsai

Abstract—In urban color aerial images, shadows cast by
cultural features may cause false color tone, loss of feature in-
formation, shape distortion of objects, and failure of conjugate
image matching within the shadow area. This paper presents an
automatic property-based approach for the detection and com-
pensation of shadow regions with shape information preserved in
complex urban color aerial images for solving problems caused by
cast shadows in digital image mapping. The technique is applied
in several invariant color spaces that decouple luminance and
chromaticity, including HSI, HSV, HCYV, YIQ, and YC,C,. models.
Experimental results from de-shadowing color aerial images of a
complex building and a highway segment in these color models are
evaluated in terms of visual comparisons and shadow detection
accuracy assessments. The results show the effectiveness of the
proposed approach in revealing details under shadows and the
suitability of these color models in de-shadowing urban color
aerial images.

Index Terms—Color model, de-shadowing, shadow compensa-
tion, shadow detection, thresholding.

1. INTRODUCTION

N urban aerial images, shadows are usually cast by elevated

objects such as various cultural features (buildings, bridges,
towers, etc.) when they are illuminated by the Sun at the time
of exposures. Shadow can provide additional geometric and se-
mantic clues about the shape and position of its casting ob-
ject and the position of the light source [1]-[3]. On the other
hand, objects within shadows reflect little radiance and require
much attention to discern on aerial images because the inci-
dent illumination is occluded by the casting objects. As a result,
cast shadows may cause loss of feature information, false color
tone, shape distortion of objects, and failure of conjugate image
matching within the shadow area. Hence, effects caused by cast
shadows in color aerial images of complex urban environment
demand solutions for digital image mapping.

Though there were several techniques in the literature in
detecting shadows in black and white (B&W) aerial images
[4]-[10], relatively limited work has been found for identifying
and correcting shadows in color aerial images in which radio-
metric reflections from features in the scene are recorded in
color tones. Considering the atmospheric Rayleigh scattering
effect, Polidorio ef al. [2] proposed a robust technique to
segment shaded areas in color images obtained by airborne and
orbital sensors by simply thresholding the difference image of
the saturation and the intensity components for each pixel in
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a normalized hue, saturation, and intensity (HSI) color space.
Susuki et al. [11] presented a method that applies separation
of spatial frequency components and probabilistic shadow
segmentation in the red, green, and blue (RGB) space and
compensations of intensity and saturation values to improve
the visibility of features in shadowed regions while retaining
nonshadowed regions and the natural tint of shadowed regions.
Recently, Huang ef al. [12] presented an imaging model of
shadows based on Phong illumination model [13] and em-
ployed thresholding on the hue, blue, and green-blue difference
components sequentially to detect shadowed areas, which were
then compensated by applying the Retinex technique to both
shadowed and nonshadowed areas separately.

However, automation on shadow compensation in these
efforts is not accomplished due to the following drawbacks
[11]-[13].

1) Image and scene analysis is required for determining op-
timal thresholds to identify shadows cast by various fea-
tures in different surrounding environments.

2) Intensive calculation of the Bayesian likelihood
a posteriori probabilities in the RGB space, as well
as the determination of several heuristic coefficients for
intensity and saturation compensations, are demanded.

3) Attention is also required on determining the thresholds
to carefully exclude both bluish and greenish objects from
the shadow segments.

This paper presents an automatic property-based de-shad-
owing approach for solving the problems caused by cast
shadows in color aerial images of complex urban environment.
The proposed approach exploits the properties of shadows in
luminance and chromaticity and is applied in several invariant
color spaces, including HSI; hue, saturation, and value (HSV);
hue, chroma, and value (HCV), luma, inphase, and quadrature
(YIQ); and YC,C,. models. Experimental results from applying
the proposed approach in de-shadowing two color aerial im-
ages of a complex building and a highway segment in these
color models are evaluated in terms of visual comparisons and
shadow detection accuracy assessment. The results demonstrate
the effectiveness of the proposed approach in revealing details
under shadows and the suitability of these color models in
de-shadowing color aerial images.

II. PHOTOMETRIC INVARIANT COLOR MODELS

In color aerial images, color tone is a powerful descriptor that
simplifies and dominates feature identification and extraction
in visual interpretation applications. Basically, the color that
human beings perceive in an object is determined by the quality
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of a chromatic light source in three quantities: radiance, lumi-
nance, and brightness [14]. Objects in an aerial scene reflect
the chromatic electro-magnetic radiance (EMR) emitted from
the Sun and show various colors subjective to their reflectance
to the three primary wavelengths in red (R), green (G), and
blue (B) as designated by the Commission Internationale de
I’Eclairage (CIE). Thus, all colors are seen as variable combi-
nation of the three primaries in the RGB color model, which
is usually used in representing and displaying images. Besides,
several color models that decouple luminance and chromaticity
are briefly described in the following in terms of their relations
with the RGB model.

A. HSI Model

The HSI model [15] manipulates color images with the fol-

lowing transformation from the RGB model:
1 1 1

1 3 3 3 R

V| = | =& —T\/g @ G 1)
—2
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S=\/VE+ V3 2)
[/2
H=tan™! 2
o <h>

if V1 #0, otherwise H is undefined. (3)

Note that hue and saturation taken together are called chro-
maticity and the brightness of a chromatic light embodies the
achromatic notion of intensity [14].

B. HSV Model

Smith [16] described a triangle-based HSV model in the fol-
lowing relations with the RGB model:

1
V=3(R+G+B) 4)
3 .
S =1- m mlH(R,G7B) (5)
Y if B<@
H_{360°—9 if B>d ©)

in which

Hzcosl{ L(R—G) + (R—B)] }
VIR=G?2+(R-B)(G-B) |

C. HCV Model

The HCV model [17] describes the dominant frequency, the
amount of color, and luminance, respectively, in the following
relations with the RGB model:

1
V:§(R+G+B) o
- B
H =tan™! [Ri} ®
V3(V - @)
V-G .
) cosEH if |cosH|> 0.2
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D. YIQ Model

The YIQ color model is a widely supported standard in
National Television Standards Commission (NTSC) color
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Fig. 1. Automatic threshold determination by applying Otsu’s method.
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Fig. 2. Grey-level LUT generation in the histogram matching approach.

TV transmission. In this scheme, Y is proportional to the
gamma-corrected luminance, which corresponds roughly with
intensity, and I and @ jointly describe the chroma, which
corresponds with hue and saturation, of a color image in the
following relations with the RGB model [14], [15], [18]:

Y 0.299  0.587 0.114 R
I =1]059% -0.275 -0.321 G (10)
Q 0.212 -0.523 0.311 B

E. YC,C, Model

The YC;C,. model is used in most video and image com-
pression standards like JPEG, MPEG, and H2.63+ [19] for the
transmission of /uma and chroma components coded in the in-
teger range [0, 255]. It has the following relations with the RGB
model [20]:

Y 0.257 0.504 0.098 R 16

Cy| =|-0.148 —-0.291 0.439 G|+ |128

C, 0.439 —0.368 —0.071 B 128
Y

Note that the V' component in both HSV and HCV models
as well as the Y component in the YIQ and YC;C,. models are
identical or equivalent to the I component in the HSI model.
These components are then called infensity-equivalent (I.)
components. So are the () component in the YIQ model and C..
component in the YC;,C,. model equivalent to the H component
in the HSI model. These components are then called hue-equiv-
alent (H.) components. Both I, and H. components of the
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Fig. 3.

RGB color aerial images (Courtesy of Great Wing Airlines, Taiwan, R.O.C.). (a) A complex building. (b) A highway segment.

Fig. 4. Manually interpreted shadow masks (white area) as ground truth of shadow regions. (a) Shadow of the image in Fig. 3(a). (b) Shadow of the image in

Fig. 3(b).

transformed images were used in the proposed de-shadowing
approach described in the following.

III. PROPERTY-BASED DE-SHADOWING APPROACH

It is not difficult for human interpreters to identify shadows
in color aerial images because shadow itself is one of the
fundamental elements in visual photo interpretation [1], [3].
However, identifying shadows in color aerial images of com-
plex urban scenes by computer programs involves developing
algorithms for solving many difficult problems, including
boundary ambiguity, color inconstancy, illumination variation,
atmospheric effect, etc. The first step toward de-shadowing
in color aerial images involves exploiting the luminance and
chromaticity properties of shadows. It has been observed that
shadowed regions in color aerial images hold the following
properties:
1) lower luminance (intensity) because the EMR from the
Sun is obstructed;

2) higher saturation with short blue-violet wavelength due
to atmospheric Rayleigh scattering effect [2], [21];

3) increased hue values because the change of intensity of
an area when shadowed and not shadowed is positive pro-
portional to the wavelength [12].

These properties are easily discovered when the normalized
photometric invariant color models mentioned above are used.
Considering the above properties, the H. and I. components
are used in the proposed approach which involves the following
four steps.

A. Color Transformation

The RGB-based color aerial images are transformed into the
photometric invariant color model under investigation using
corresponding relations as described above. For comparison

purpose, transformed components in these color models are all
scaled to the range of values in [0, 1] for shadow segmentation.

B. Shadow Segmentation

Both H, and I, components are considered in extracting the
shadowed area in color aerial images. The spectral ratioing
technique is applied to obtain the (H.+ 1)/(I.+ 1) ratio
image, which is scaled to have pixels’ values in [0, 255]. The
(He + 1)/(Ie + 1) ratio image shall enhance the increased hue
property of shadows with low luminance, i.e., pixels in shad-
owed regions will have higher values in the (H, + 1) /(I + 1)
ratio image than those pixels in nonshadowed regions. The
Otsu’s method [22] is then applied over the histogram of the
ratio image to automatically determine the threshold for seg-
menting the regions in shadow into a logical shadow mask for
those pixels with value greater than the threshold. The Otsu’s
method finds an optimal threshold 7', which maximizes [23]

(- w(T) - p(1))?
w(T) - u(T)

where w(T') = ZiTzo pi, (1) = Z?igf-u Di, b= Ezzj()ﬂ " Pis
and p; is the probability of pixels with grey level 2 in the image.
For instance, Fig. 1 shows an example of automatic determina-
tion of the threshold value of T = 102 for a maximum value of
V(T) in (12).

However, it is difficult to differentiate dark object and dark
shadow in an automatic shadow detection approach in which
the threshold value is automatically determined according to
the histogram distribution of the image. For example, the dark
object and the dark shadow are usually in the same side of
the histogram of the (H. 4+ 1)/(I. + 1) ratio image in the pro-
posed approach. Itis then hard to determine an optimal threshold
using Otsu’s method for the differentiation of dark object and

V(T) =

12)
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dark shadow in the image. There exists a tradeoff between au-
tomation and accuracy in shadow segmentation approaches. We
focus on the automation in shadow segmentation as well as pre-
serving the shape information and compensating shadows as de-
scribed in the following.

C. Shape Preservation

The shape preservation process is an option for providing ad-
ditional shape information of the shadow-casting cultural fea-
tures. The I, component is used in finding the boundaries and
shapes of cultural features and dark regions, including shadows
in which luminance is obstructed. A Sobel operator is applied
on the I, component to obtain a gradient image, which is also
scaled to have pixels’ values in [0, 255]. The normalized gra-
dient image is then segmented as a logical gradient mask by
employing the Otsu’s method [22], [23] in determining the gra-
dient threshold. The gradient mask is further processed to obtain
a shape mask by using a morphological CLEAN process to elim-
inate any isolated hole in a homogeneous area. By overlapping

Normalized composites of the color aerial images in Fig. 3 in the HSI, HSV, HCV, YIQ, and YC,C,. color models (displayed in B, GG, and R sequence).

the shape mask with the existing shadow mask of shadowed re-
gions using a logical AND operator, a shape-preserved shadow
mask was derived for use in restoring luminance of the shad-
owed regions. A nonshadow mask is also computed as the com-
plementary of the shape-preserved shadow mask.

D. Shadow Compensation

Since luminance gives a measure of the amount of energy a
sensor perceives from a light source, the intensity in each pixel
of the RGB color aerial images is proportional to the incident
illumination (radiance) to and the reflectance of the objects. The
purpose of shadow compensation is to recover the amount of
incident illumination of the shadowed regions to the value when
not obstructed by cultural features.

This paper employs the lookup table (LUT) technique in a
two-step histogram matching approach [24], band by band, for
creating a final image with the shadowed regions been compen-
sated. At the first step, morphological dilation operation [23]
and logical AND (N) and NOT (~) operators were applied to
detect connected shadowed regions over the shadow mask and
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Fig. 6. Normalized (H. 4 1)/(I. + 1) ratio images of the five composites in Fig. 5.

to generate corresponding shadow-buffer zones of these regions.
The morphological dilation, also known as Minkowski addition,
of the binary shadow mask A by a kernel B, denoted A ® B, is
defined as [23]

A® B ={(z,y) + (u,v) : (z,y) € A,(u,v) € B} (13)

in which the structuring elements of the kernel B determine
the way of thickening of the resulting image. Starting with
a nonzero pixel p in the shadow mask A, a connected shad-
owed region was detected by creating a sequence of sets
Xo = {p},Xl,XQ, ..., such that X,, = (anl ©® B5><5) nA
until X, = Xji_1 using a 5x 35 square kernel Bsy5 in
iterated dilation operations. The shadow-buffer zone of
the connected shadowed region X} is then generated by
Yi = (Xk ® Biox10) N (~X}) using a 10 x 10 square kernel
Biox1p in one dilation operation. The normalized cumu-
lated histograms of a connected shadowed region X and
its shadow-buffer zone Y}, were used in the interpolation of
output LUT grey values as schematically shown in Fig. 2. In
the second step, the grey-value LUT was used to adjust the

luminance of the pixels within that connected shadowed region.
As a result, the luminance values of pixels in each connected
shadowed region are recovered in accordance with the pixels in
local surroundings around the shadowed regions such that the
color constancy across the shadow boundaries is observed.

IV. COMPARATIVE EVALUATIONS OF EXPERIMENTAL RESULTS

The proposed de-shadowing approach was implemented in
personal computers in MATLAB programs under Microsoft
Windows XP environment for removing shadows while pre-
serving the shape information of cultured features in color
aerial images. The shadow detection methods proposed in
references [2] and [12] were also implemented for performance
comparison and evaluation. A modified approach of [2] was
also presented in this paper with normalized I — S difference
and the threshold K obtained by applying the Otsu’s method
[22], [23].

Fig. 3 shows the color aerial images of a complex building
and a highway segment used in the experiment to evaluate
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the feasibility of the proposed procedures. The original aerial
photos were taken for the purpose of 1/1000 topographic
mapping in Taoyuan County, Taiwan, R.O.C., by Great Wing
Airlines, Taiwan, R.O.C., using a RMK TOP 30 aerial frame
camera with a photo scale of 1/5000. The aerial images were
scanned from the original aerial films using a VEXCEL Ultra-
Scan 5000 scanner with scanning resolution of 25 pm for use
in digital photogrammetric processes. Note that the center part
of the co-shaped complex building in Fig. 3(a) is bluish and the
right vehicle on the highway in Fig. 3(b) has almost the same
hue and contrast as with the pavement. Fig. 4 shows manually
interpreted true shadow masks as the ground truth of shadow
regions for both experimental images in Fig. 3, respectively.
The true shadow masks were used in evaluating the precision of
shadow detection of the proposed approach and other methods
under comparison in the experiment.

A. Visual Comparisons

Following the procedures in the proposed approach, Fig. 5
shows the normalized color composites in the HSI, HSV, HCV,

Resulting shape masks from the I. component of the five composites in Fig. 5.

YIQ, and YC,,C,. color models of the experimental aerial images
in Fig. 3, respectively. It is observed that the shadow regions re-
veal blue tones in the H, component of the five color models.
Fig. 6 illustrates the scaled (H. + 1)/(I. + 1) ratio images of
the five color composites in Fig. 5, respectively. Note that the
normalized ratio images enhance the increased hue property of
shadow regions as expected, especially in the HSI, YIQ, and
YC,C, models. Fig. 7 illustrates the resulting shape masks of
the shape preservation process in which the gradient thresholds
(Tgradiem) for the gradient images of corresponding I, compo-
nents were determined as 62 and 48 for the two experimental im-
ages, respectively. Itis shown that these shape masks of the same
experimental image are very similar due to gradient normal-
ization although different I, component was used in the shape
preservation process.

Figs. 8 and 9 further demonstrate resulting shape-preserved
shadow masks of the two experimental images by applying the
proposed approach, the shadow detection method in [2], the
modified method of [2], and the method in [12], respectively.
Note that in the modified method of [2] the threshold values,
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Fig. 8.

Resulting shadow masks from the ratio images in the proposed approach and from other methods applied to Fig. 3(a). (a) HSI (T = 66 for ratio image),

(b) HSV (T = 107 for ratio image), (c¢) HCV (T = 86 for ratio image), (d) YIQ (T = 134 for ratio image), (¢) YC,C,. (T = 118 for ratio image), (f) HSIL:
I — S [2] with K = 0, (g) HSI: normalized I-S [2] with K = 0.51 (Otsu’s method [22], [23]), (h) HGB [12] with T} = 0.1, T, = 80,73 = 80.

i.e.,, K = 0.51 for the image in Fig. 3(a) and K = 0.60 for
the image in Fig. 3(b), are automatically determined using the
Otsu’s method. Comparing detected shadow masks with the true
shadow mask, it is observed that the modified method of [2]
performs much better than the original method in [2] does in
detecting shadows in this experiment. However, both the mod-
ified and the original methods of [2] fail to distinguish bluish
objects from shadow regions as shown in Fig. 8(f) and (g). On
the other hand, the threshold values, i.e., 77 = 0.1 for normal-
ized H, Ty = 80 for B, and T3 = 80 for G — B difference for the
image in Fig. 3(a) and 77 = 0.41 for normalized H,T> = 116
for B, and T35 = 70 for G — B difference for the image in
Fig. 3(b), in [12] are manually estimated with trial and error
for a best shot of shadow detection of the color aerial images,
respectively. As shown in Figs. 8 and 9, it is clear that the pro-
posed approach with automatic threshold determination in the
ratio image delivers good results in shadow detection in the HSI,
YIQ, and YC;,C, models for both experimental images.

Figs. 10 and 11 show the RGB-based final results of
shadow compensation for the two images in Fig. 3 by
applying the two-step histogram matching technique. As
illustrated in the results, the proposed shadow detection
approach is sensitive to dark bluish areas in the HSV and
YIQ models and sensitive to greenish areas in the HCV and
YCyC,. models. For the image of the oo-shaped building,
the resulting images in Fig. 10, except Fig. 10(f) from
employing the original method in [2], dramatically improved
the visualization of features within the shaded courtyards
in and upper-right surroundings around the building upon
de-shadowing, but resulting images of the original and mod-
ified methods of [2] illustrate distorted bright color in bluish
and greenish objects due to the false detection of these
objects as shadows. For the resulting image of highway seg-
ment, shadow regions of the three vehicles on the highway
as well as shadow regions of the highway structure as shown
in Fig. 11 were well compensated toward similar hue as
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(®)

Fig. 9. Resulting shadow masks from the ratio images in the proposed approach and from other methods applied to Fig. 3(b). (a) HSI (T = 102 for ratio image).
(b) HSV (T = 111 for ratio image). (¢) HCV (T = 136 for ratio image). (d) YIQ (T = 130 for ratio image). (e) YC,C,. (T' = 150 for ratio image). (f) HSI: I-S
[2] with I{ = 0. (g) HSI: normalized I-S [2] with i = 0.60 (Otsu’s method [22], [23]). (h) HGB [12] with T} = 0.41,7T5 = 116,75 = 70.

the surrounding neighborhood in the results of applying the
proposed approach in the HSI, YIQ, and YC,C, models.

It is concluded that the proposed approach enhances the
spectral intensities of the pixels within the shadowed regions
to reveal a wealth of new details that were not discerned in the
original images.

B. Shadow Detection Accuracy Assessment

Following the concept of error matrix [1], [3] and the ter-
minology in references [25] and [26], we define the evaluation
metrics of shadow detection accuracy assessment at the pixel
level as follows.

1) Producer’s accuracies:
(a) shadow:

TP

~ TP+ FN (14

ns

(b) nonshadow:

TN
"= FP TN ()
2) User’s accuracies:
(a) shadow:
TP
PS= T 4 Fp (16)
(b) nonshadow:
TN
P = AN T RN a7
3) Overall accuracy:
TP + TN
i (18)

"T TP+ TN +FDP + FN
in which TP (true positive) is the number of shadow
pixels correctly identified, FN (false negative) is the
number of shadow pixels identified as nonshadows,
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(2)

(h)

Fig. 10. Final results of shadow compensation on the image of building in Fig. 3(a) from applying the proposed approach and other methods. (a) HSI. (b) HSV.
(c) HCV. (d) YIQ. (e) YC,C,.. (f) HSI: T — S [2] with Kl = 0. (g) HSI: normalized I-S [2] with ' = 0.51 (Otsu’s method [22], [23]). (h) HGB [12] with

T, = 0.1,T, = 80,7 = 80.

FP (false positive) is the number of nonshadow
pixels identified as shadows, TN (true negative) is
the number of nonshadow pixels correctly identified, and
TP 4+ TN 4 FP + FN stands for the total number of
pixels in the image.

Among these metrics, the producer’s accuracies are measures
of the correctness [26] of the algorithm and indicate how well
pixels of known categories are correctly classified. The user’s
accuracies are measures of the precision [25] of the algorithm
and indicate the probabilities of pixels been correctly classified
into actual categories on the ground. The overall accuracy is a
measure of relative effectiveness of the algorithm and reports
the percentage correct [3] or the closeness of the estimate to the
true value. These metrics together demonstrate the significance
of a shadow detection algorithm. For a good algorithm, values
of these evaluation metrics should be high.

Experimental results of shadow detection accuracy mea-
surements of the proposed automatic approach as well as

the methods in references [2] and [12] are summarized in
Tables I and II by evaluating resulting shadow masks in
Figs. 8 and 9 with respect to the true shadow masks of Fig. 3(a)
and (b), respectively. It is shown that the HSI model is the
optimal choice for the proposed automatic approach as with the
highest user’s accuracy in shadow (p,) and overall accuracy
(7) in the experiments. The YIQ and YC,C, models are also
excellent for the proposed automatic approach with high values
in shadow detection rate (7s) and overall accuracy (7) although
they are sensitive to bluish and greenish objects. The accuracy
metrics also illustrate that the proposed automatic approach
applied in the HSI, YIQ, and YC,C, models is clearly better
than those proposed in references [2] and [12], which requires
manual estimates of several thresholds that are scene dependent.

V. CONCLUSION

This paper exploits the properties of cast shadows in lumi-
nance and chromaticity and implements fundamental chromatic
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(g) (h
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Fig. 11. Final results of shadow compensation of the image of highway segment in Fig. 3(b) from applying the proposed approach and other methods. (a) HSI.
(b) HSV. (¢) HCV. (d) YIQ. (¢) YC,C,.. (f) HSI: I — S [2] with K' = 0. (g) HSL: normalized I-S [2] with K = 0.60 (Otsu’s method [22], [23]). (h) HGB [12]
with T}, = 0.41, T, = 116,753 = 70.

TABLE 1 TABLE 1II
SHADOW DETECTION ACCURACY MEASUREMENTS OF THE IMAGE IN Fig. 3(a) SHADOW DETECTION ACCURACY MEASUREMENTS OF THE IMAGE IN FIG. 3(b)
Producer’s accuracies User’s accuracies Overall Producer’s accuracies User’s accuracies Overall
Color accuracy Color accuracy
Method Model | Shadow | Nonshadow | Shadow | Nonshadow . Method Model | Shadow | Nonshadow | Shadow | Nonshadow o
n) | mes | pew | pacw | U9 O | M) | p) | PR %)
HSI 89.9 99.0 97.9 94.7 95.7 HSI 88.2 99.3 97.4 96.4 96.6
HSV 79.6 86.6 76.5 88.6 84.1 HSV 93.3 87.8 70.8 97.6 89.1
Proposed Hev 88.8 783 69.1 92.7 82.0 Proposed HCV 81.5 88.0 68.3 93.7 86.4
YIQ 95.6 94.4 90.3 97.5 94.8 Yig 92.2 98.8 96.2 97.6 97.2
YC,C, 97.5 93.2 88.7 98.6 94.7 YG,C, 91.2 97.5 92.1 97.2 96.0
[2)" HSI 39.5 88.5 65.3 72.8 712 2 HSI 87.9 56.0 389 93.6 63.7
Modified [2* | HSI 79.2 85.1 74.4 88.2 83.0 Modified [2]" | HSI 62.8 82.0 52.6 87.4 774
[2p HGB 8.1 9.6 935 93.7 9.6 [12p HGB 79.1 99.7 98.8 93.7 94.7

Notes: 1. Threshold: k=0 for /-S difference.

2. Threshold: K=0.51 (Otsu’s method [22][23]) for normalized /-S difference.

3. Thresholds: 7,=0.10 for normalized H, T,= 80 for B, and T;=380 for G-B difference.

Notes: 1. Threshold: K=0 for /-S difference.

2. Threshold: K=0.60 (Otsu’s method [22][23]) for normalized /-S difference.

3. Thresholds: 7,=0.41 for normalized H, T,= 116 for B, and T;=70 for G-B difference.
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thresholding processes under physical model in an automatic
de-shadowing approach for shadow compensation in color
aerial images. The proposed approach employs spectral ratio-
ing and automatic thresholding techniques in detecting shadow
regions, thus effectively eliminating the requirement of a priori
geometric knowledge or information about the scene and the
source of illumination. Meanwhile, the proposed approach also
implements a two-step histogram matching technique to com-
pensate shadow regions from their surrounding neighborhoods.
Experimental results from applying the proposed approach in
de-shadowing the color aerial images of a complex building and
a highway segment in five invariant color spaces were evaluated
and compared with the results from applying other methods in
terms of visual comparisons and shadow detection accuracy
assessment. It is proved that the proposed approach not only
automatically detects shadow regions with high precision but
also compensates the luminance of shadow regions toward
that of direct illumination in complex urban environment. Our
conclusion is that applying the proposed de-shadowing ap-
proach in the HSI, YIQ and YC,C,. color models will produce
images with dramatically improved visualization of features
within recovered shadow regions. Moreover, the preserved
shape information of shadow regions and cultured features
provides important geometric and semantic evidences for a
high performance system of 3-D building extraction and model
reconstruction in complex urban environment using color aerial
images.
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