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Delaunay triangulations in TIN creation: 
an overview and a linear-time algorithm 

VICTOR J. D. TSAl 

Department of Civil and Environmental Engineering, 
University of Wisconsin-Madison, Madison, Wisconsin 53706, U.S.A. 

Abstract. The Delaunay triangulation is commonly used to generate triangulared 
irregular network (TIN) models for a best description of the surface morphology in a 
variety of applications in geographic information systems (GIs). This paper 
discusses the definitions and basic properties of the standard and constrained 
Delaunay triangulations. Several existing Delaunay algorithms are reviewed and 
classified into three categories according to their procedures: ( I )  divide-and-conquer 
methods, (2) incremental insertion methods, and (3) triangulation growth methods. 
Furthermore, a linear-time Convex Hull Insertion algorithm is presented to 
construct T l N s  for a set of points as well as specific features such as constraint 
breaklines and exclusion boundaries. Empirical results over various sets of up to 
50000 points on personal computers show that the proposed algorithm efficiently 
expedites the construction of TIN models in approximately O ( N )  for N randomly 
distributed points. 

1. Introduction 
In digital terrain modelling, the triangulated irregular network (TIN) model 

(Peucker e t  a l .  1976) approximates a topographic surface by a set of contiguous 
triangular facets generated from a set of irregularly located points. One of the 
advantages of the T I N  model is that it can describe a topographic surface at different 
levels of resolution as  far as  the information content is concerned. It has been 
recognized that the T I N  model can accurately describe more complex surfaces and use 
less space and time than the grid cell data model of particular resolutions, e.g., the 
digital elevation model (DEM) (Mark 1975, McCullagh and Ross 1980, McCullagh 
1988). 

With the introduction of additional constraints, such as breaklines and exclusion 
boundaries, the T I N  models can be extended to describe the surface morphology more 
adequately and reasonably than ever. Breaklines are linear features, such as  ridges and 
valleys, used to define and control the behaviour of the surface in terms of continuity 
and smoothness. Similarly, exclusion boundaries explicitly define the regional 
boundaries of abrupt changes in surface behaviour. They may represent the internal 
boundaries likeshoreline and buildings within the study area; they may be the external 
boundaries which define the extreme frame of the study area. Both breaklines and 
exclusion boundaries dominate the surface behaviour and are critical in describing the 
surface morphology using a triangulated model like TIN. 

The T I N  model has been widely used in a variety of applications in geographical 
information systems (GIs). Using T I N  models, i t  is simpler to  tackle the problems 
associated with spatial topology, automated contouring, two-and-half dimensional 
(2.5-D) visualization, surface drapes with other data, relief/hill shading, volumetric and 
cut-fill analysis, surface characterization and reconstructions, and site visibility 
analyses on terrain surfaces (Burrough 1986, Gold and Cormack 1987, Clarke 1990, 
Falcidieno and Spagnuolo 1991, Lee 1991). For example, attribute values a t  the very 
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important points or the 'high information content' points on the landscape are 
measured and collected to generate a TIN-based terrain model. The intervening 
information and corresponding attributes are then interpolated on the single-valued 
functional surface, i.e., z =  f(x, y), which approximates data on these significant points. 
Terrain parameters such as slope, aspect, area and perimeter can be calculated for each 
triangular facet and stored as associated attributes of the facet. Moreover, thematic 
maps for certain discrete variables can be produced by overlaying and intersecting the 
TIN structure with the topological polygon structure (Burrough 1986). 

The primary problem in TIN creation is how to allocate a unique set of triangles 
that can best describe the terrain and ensure bounded errors on the interpolation of 
bi-variate data at randomly sampled points (Clarke 1990). Among all possible 
triangulations, the Delaunay triangulation (Delaunay 1934) has all the salient 
properties for terrain fitting and is thus usually used in TIN creation. When non- 
crossing breaklines and exclusion boundaries are added into the problem as pre- 
specified constraints, however, a 'constrained' Delaunay triangulation has to be 
involved. 

The remainder of this paper is organized as follows. Section 2 describes the 
definitions and basic properties of the standard and constrained planar Delaunay 
triangulations. Section 3 categorizes and briefly reviews several existing methods for 
standard Delaunay triangulations and the insertion of constraint segments. In $4, a 
linear-time Convex Hull Insertion algorithm is presented for creating the TIN models 
of a set of distinct points and pre-specified constraints. In 5 5, empirical results over 
various sets of up to 50000 points on personal computers indicate that the proposed 
Convex Hull Insertion algorithm expedites the construction of TIN models in expected 
linear time for randomly distributed points. Section 6 then concludes this paper with 
future extension of the Delaunay triangulation for three-dimensional (3-D) GIs  data 
models. Completed in the appendix are the computations of the circumcircle of a 
triangle which is intensively involved in a Delaunay method. 

2. Definitions and basic properties 
2.1. Standard (unconstrained) Delaunay triangulations 

The Delaunay triangulation is the straight-line dual of the Voronoi diagram 
(Voronoi 1908) and is constructed by connecting the points whose associated Voronoi 
polygons share a common edge. A Delaunay triangle is thus formed from three 
adjacent points whose associated Voronoi polygons meet at a common vertex, which is 
the centre of the circumscribed circle of the Delaunay triangle. For example, figure 1 
depicts the duals of the Voronoi diagram and the Delaunay triangulation for a set of 16 
points in the Euclidean plane. It is observed that the Delaunay triangulation follows the 
Euler-Poincari: theorem for connected planar graphs: 

The Delaunay triangulation of a set of points is an aggregate of connected but non- 
overlapping triangles such that the circumcircle of each triangle contains no other 
point in its interior. It is preferred as a straightforward definition of the Delaunay 
triangulation rather than the dual of the Voronoi diagram (Chew 1989). The property 
of 'the circumcircle of each triangle contains no other point in its interior' has been used 
as a criterion, called the empty-circle criterion and hereinafter the Delaunay criterion, to 
construct such triangulations for a set of distinct planar points. Figure 2 shows possible 
relationships between a new point to be added and an existing Delaunay triangle, and 
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Delaunay triangulations in TIN creations 

Figure 1. Delaunay triangulations (solid) and Voronoi diagrams (dashed) for a set of 16 planar 
points. 

their outcomes after applying the Delaunay criterion. Note that in figure 2(c )  the two 
ambiguous outcomes are both valid when the new point is on the circumcircle of a 
triangle; the shorter diagonal is desirable for a near optimal triangulation that 
minimizes the total edge length over all triangulations (Manachcr and Zobrist 1979, 
Kirkpatrick 1980). Though the Delaunay triangulation does not approximate the 
optimal triangulation (Manacher and Zobrist 1979). it is close to  optimal on the 
average (Lingas 1986). However, the Delaunay triangulation is unique whenever no  
more than three neighbouring points are co-circular in the Euclidean plane. 

In plotting contours through triangular grids, Lawson (1972) suggested the max- 
min angle criterion to construct triangulations with local equiangularity: in every 
convex quadrilateral formed by two adjacent triangles, the swapping of diagonals does 
not increase the minimum of the six interior angles concerned. By the max-min angle 
criterion, the minimum measure of angles of all the triangles in the triangulation is 
maximized. Based on the max-min angle criterion Lawson (1977) also gave a local 
optimization procedure (LOP) to  swap the diagonal of a convex quadrilateral, as 
already shown in figure 2 (b), to achieve a most equiangular triangulation. Nevertheless, 
figure 3 illustrates the completion of the LOP swapping for a new point inserted into an  
existing triangulation until no diagonal swapping occurs. Both Lawson (1977) and 
Sibson (1978) have observed that the Delaunay triangulation ensures the max-min 
angle criterion and uniquely is locally equiangular. 

2.2. Constrained Delaunay triangulations 
The standard Delaunay triangulation can be naturally extended when a set of 

prescribed non-crossing breaklines and exclusion boundaries are forced in as part of 
the triangulation. Hence a 'constrained' Delaunay triangulation is introduced and is as  
close as possible to the standard Delaunay triangulation but integrates the constrained 
obstacles (Lee and Lin 1986, Bernal 1988, Chew 1989). Figure 4 gives a corresponding 
example to the standard Delaunay triangulation in figure 1 when two breaklines are 
forced to thc original data set. Note that the triangles within the shaded shell are refined 
to include the breaklines. 
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(d ) 
Figure 2. Possible relationships between a point and agiangle. (a) Inside the triangle; (6) inside 

the circumcircle; (c) on the circumcircle (diagonal 13 is desirable for minimum edge length); 
(d) outside the circumcircle. 

(4 (4 (4 
Figure 3. Completion of Lawson's LOP swapping. (a) Point insertion; (6) diagonal 'swapping 

(c) the triangulation. 
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Figure 4. Delaunay triangulations (thin) for a set of 16 planar points and 2 breaklines (bold). 

Figure 5. Visibility graph of a set of 9 points and 2 constraint segments. 

Lee and Lin (1986) observed that the Delaunay criterion is still fulfilled andthe local 
equiangularity property engaged by the constrained Delaunay triangulation with 
minor refinement. The visibility graph is helpful in redefining the Delaunay criterion 
and Lawson's LOP swapping for the constrained Delaunay triangulation when 
constraints are forced (Lee and Lin 1986, De Floriani and Puppo 1992). For a set of 
points and constraint breaklines, the visibility graph is constructed by connecting any 
two points which are mutually visible, i.e., the connecting line segment does not 
intersect any constraint breakline except at the end nodes as shown in figure 5. The 
Delaunay crilerion and Lawson's LOP swapping can then be redefined as follows: 

The constrained Delaunay criterion: a triangle is a constrained Delaunay triangle 
if and only if there does not exist any other point inside its circumcircle and visible 
from all the three vertices of it. 
The constrained Lawson's LOP: a locally optimal diagonal of a convex 
quadrilateral formed by two adjacent triangles is chosen if and only if the 
constrained Delaunay criterion is satisfied. 
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Delaunay triangulations in TIN creations 

- 
Figure 6. Possible relationships between a point and a triangle with constraint segment 13. 

(a) Inside~he constrained triangle; (b) inside the circumcircle; (c) on the circumcircle 
(diagonal 12 is desirable for minimum edge length in the second example); ( d )  outside the 
circumcircle. 

Figure 7. Completionf theconstrained Lnwson's LOP swapping in a triangulation with 
constraint segments ab and bc. ( a )  Point insertion; (b) diagonal swapping; (c) triangulation. 

In comparison with figure 2, figure 6 illustrates possible relationships between 
a new point and an existing constrained Delaunay triangle. Figure 7 gives an equivalent 
example t o  figure 3 for the constrained Lawson's LOP when a new point is added into 
existing constrained Delaunay triangulations. These criteria and LOPS, either standard 
o r  constrained, areintensively involved in the algorithms for Delaunay triangulations 
hereinafter. 

3. Review of Delaunay methods 
The computation of the Delaunay triangulations and Voronoi tessellations over a 

set of olanar ooints has been intensively studied in the literature, and a variety of 
algorithms has been proposed for different applications. For a given set of N 2 3 points, 
table 1 lists the exoected run-timecomplexities for several of these algorithms. The run- 
time complexity of an algorithm depends on the number of points in the set, how the 
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Table 1. Run-time complexities for several Delaunay triangulation algorithms. 

Algorithm Average case Worst case 

Lawson (1977)' 
Green and Sibson (1978)) 
Lewis and Robinson (1978)' 
Brassel and Reif (1979)) 
McCullagh and Ross (1980)' 
Lee and Schachter ( I )  (1980)' 
Lee and Schachter (2) (1980)' 
Bowyer (1981)2 
Watson (1981)' 
Mirante and Weigarten (1982)) 
Sloan (1987)' 

' Dwyer (1987)l 
Chew (1989)' 
Macedonio and Pareschi (1991)' 

O(N4I3) OW 
O(N 'I2) O(N ') 

O(N log N) O(N2) 
O(N 312) ow 
O(N )I2) OW ') 

O(N log N) O(N log N) 
O(N )I2) O(N2j 
O(N "') O(N2) 
O(N 'I2) W2) 
O(N 'I2) OW2) 
O(N 5'4) O(N ') 

O(N log log N) O(N log N) 
O(N log N) O(N log N) 

O(N 3'2) O(N ') 

Notes: I .  Diuide-and-conquer approach. 2. Incremental insertion approach. 3. Triangulation 
growth approach. 

points are distributed, and the data structure and codes of implementation. I t  describes 
the upper bounds of the algorithm in the is proportional to  notion which is often 
expressed in the 0-notation, or big-Oh notations, defined as  follows: 

A Junction g(N) is said to  be O( J(N)) gthere exist constants c ,  and No such that g(N) is 
less than c,/(N) for all N> No. (Sedgewick 1988, p. 72) 

According to the procedures in creating the triangulations, these algorithms and 
their derivatives can be classified into three categories: (I) the divide-and-conquer 
methods, (2) the incremental insertion methods, and (3) the triangulation growth 
methods. These methods are now briefly reviewed. 

3.1. Divide-and-Conquer algorithms 
Lewis and Robinson (1978) presented a triangulation method by applying a 

problem reduction technique to deal with bounded regions for contouring and finite 
element analysis applications. Lee and Schachter ( I  980) presented a divide-and-conquer 
algorithm for constructing Delaunay triangulations of a set of points in the plane; it is 
similar to Shamos and Hoey's (1975) primal Voronoi algorithm. The data set is sorted 
and divided into two disjoint subsets. After constructing a triangulation for each half, 
both triangulations are combined to  form the final Delaunay triangulation. Dwyer 
(1987) improved Lee and Schachter's algorithm to the constrained case by dividing the 
data set into vertical strips, which are further subdivided into regions by crossingedges, 
and applying the constrained Lawson's LOP in diagonal swapping. 

Given a set V or N distinct planar points, for example, a divide-and-conquer 
algorithm involves the following steps: 

( 1 )  Sort V in lexicographically ascending order such that (xi, yi)<(xi+ ,, yi+ ,) if and 
only ifeither x i < x i + ,  or x i = x i + ,  and y i <  yi+ ,. Thiscan bedone by applyinga 
recursive conquer-and-divide quick sort. Then recursively follow steps (2) to (5) 
until the final triangulation is constructed. 
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(2) Divide V into two equally sized halves VL and VR, such that VL contains the first 
half of the points in the set and VR contains the rest. 

(3) Construct the Delaunay triangulations on each half. Apply Lawson's LOP to 
optimize the triangulation on each half. 

(4) Compute the convex hull of each half. Find the lower and upper common 
tangents which are known to be in the final triangulations. 

(5) Merge the two triangulations, starting with the lower common tangent of their 
convex hulls, zigzagging upward until their upper common tangent is reached. 
The merge procedure deletes non-Delaunay edges if one of its vertices is within 
the circumcircle of a triangle. Then it chooses correct Delaunay edges such that 
no other point is inside the circumcircle of a triangle by applying the Delaunay 
criterion. 

Generally, in a divide-and-conquer approach the sorted data set is recursively 
divided down to subsets of equal size until the subset can be canonically treated. In the 
case of triangulations, a canonical subset contains at least 3 but less than 6 points so 
that the Delaunay triangulation can be easily constructed by using the first 3 points to 
form a triangle and adding the rest into it. As a result, the data set is divided like a 
balanced tree with all of its canonical subsets at the lowest leaf levels where local 
triangulations are formed. Then the triangulations are merged to form the final 
triangulation level by level through the tree to the root. Thus, the merge step is 
recursively proceeded in a bottom-up breadth-first way. 

3.2. Incremental Insertion algorithms 
The incremental insertion algorithms involve introducing non-processed points, one 

at a time, into existing Delaunay triangulations which are then refined. Most 
algorithms fall into this category with a little variation indata structures and the setting 
of the initial Delaunay triangulation, which encompasses all of the data points, as either 
a super triangle or a rectangle (Lawson 1977, Lee and Schachter 1980, Bowyer 1981, 
Watson 1981, Sloan 1987). For example, the framework of a super triangle insertion 
algorithm may involve the following steps: 

( I )  Define the vertices ofa  super triangle which contains all points and serves as the 
initial Delaunay triangle. 

(2) Introduce a new point P from the set of points into existing triangulations. 
(3) Find an existing triangle which encloses P, i.e., P i s  inside the triangle, and form 

three new triangles by connecting P to each of its vertices. 
(4) Apply Lawson's LOP to update outwardly all triangles formed so far. 
(5) Repeat steps (2) to (4) until all points are introduced. 
(6) Remove all of the triangles that contain one or more vertices of the-super 

triangle. 

Instead of defining a super triangle, the iterative algorithm in Lee and Schachter 
(1980) triangulates a set of points within a rectangle whose vertices may be implicitly 
added. This algorithm was improved by Macedonio and Pareschi (1991) for 
triangulating points within a convex region. Given N points within a rectangle, the 
following procedures are involved: 

(I) Remove all points which duplicate the vertices of the rectangle. 
(2) Partition the rectangle into approximately ,,h bins, or smaller rectangular 

regions. 
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(3) Sort the points by bins. 
(4) Introduce the first point into the rectangle and connect the point to the four 

vertices of the rectangle to yield an initial triangulation. 
(5) Introduce the next point into theexisting triangulation and connect it to all the 

vertices of its enclosing triangle. 
(6) Apply Lawson's LOP to outwardly update neighbouring triangles. 
(7) Repeat steps (5) and (6) until all points are introduced. 

3.3. Triangulation Growth algorithms 
Green and Sibson (1978) implemented a recursive method for computing Dirichlet 

tessellations in the plane by scanning the points in turn, recursively modifying the 
contiguities of the Dirichlet polygons as each point is added where the Dirichlet 
polygons are growing around it. Brassel and Reif (1979) presented an algorithm, related 
to the work of Green and Sibson, for the subdivision of an area into Thiessen polygons 
(Thiessen 191 1) by starting with an arbitrary point followed by finding its Thiessen 
neighbours in a rotational search over a one-dimensional sorted data list. The 
Delaunay triangulation is then created by connecting this point to all of its Thiessen 
ncighbours and grows around until all points are involved in the triangulation. The 
fundamental procedures of a triangulation growth algorithm follow: 

(I)  Find the closest point to an arbitrary point in the set and connect the closest 
pair as a directed base line. 

(2) Search for a third point lying in the right to the directed base line by applying 
the Delaunay criterion. 

(3) Construct the Delaunay triangle and use the other two new directed edges 
(which are assigned as from the from-node of the base line to the third point, and 
then to the to-node of the base line,) as new base lines. 

(4) Repeat steps (2) and (3) until all base lines are served. 

Much of the algorithm is related to checking a considerable number of points to 
find the correct next neighbour for a given base line. For example, the rotational search 
is to calculate the centre and radius of the circumcircle. To  minimize searching time for 
any given point, McCullagh and Ross (1980) gave a modified and improved algorithm 
by initially partitioning and sorting the data set into sorted box structures. An 
expanding circlesearch was proposed to determine the candidate neighbour of the base 
line, thus reducing calculation in finding the Delaunay triangulation. Maus (1984) gave 
a very similar algorithm to that proposed by McCullagh and Ross. . . 

i t e r n a t i ~ e l ~ l ~ i r a n t e  and Weingarten (1982) a radialsweepalgorithm to 
construct the triangulations inward from the outer boundary of a set of randomly 
located points. The procedures used in the radial sweep algorithm include the following: 

Find the point which lies nearest to the centroid of the set as the starting point. 
Compute the distances and bearings from the central point to all other points in 
the set. 
Sort all other points in ascending order by bearing, distance and pitch. 
Radially sweepand form the radiating triangles by connecting thecentral point 
to all other points and connecting any two consecutive points. Points with the 
same bearing are used to form a pair of triangles on each side of the common 
line. 
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Fill in the concavity by connecting the points that are on the boundary of the 
radiating triangles, thus forming new triangles outward until the outer 
boundary of the set is reached. 
Successively optimize the triangulations inward from the triangles on  the outer 
boundary by checking the lengths of the two diagonals of a quadrilateral 
formed by a pair of triangles (similar to  Lawson's LOP). 

3.4. Incremental insertion of constraint segments 
Once the standard Delaunay triangulation of the set of points is constructed using 

any one of the aforementioned algorithms, pre-specified constraint segments can then 
be inserted to complete a constrained Delaunay triangulation. As shown in figure 8, the 
following steps are further involved to  handle constraint segments (Bernal 1988, 
De Floriani and Puppo 1992): 

(I) Insert a new constraint segment into the triangulation. 
(2) Identify those triangles whose interiors intersect the constraint segment and 

remove all internal edges shared by two such triangles, forming the influence 
polygon of the constraint segment. (Note: The influence polygon described here 
is different from the area-of-influence polygon (Hayes and Koch 1984), i.e., the 
V'u'uronoi or Thiessen polygon of a point.) 

(3) Connect all other vertices of the influence polygon to  the from-node of the 
constraint segment. 

(4) Optimize the triangulation within the injuence polygon by applying the 
constrained Lawson's LOP, forcing the constraint segment as a known edge in 
the triangulation. 

(5) Repeat steps (1) to  (4) until all constraint segments are inserted into the 
triangulation. 

(4 (d 

Figure 8. Insertion of the constraint segment ab into existing Delaunay triangulations. 
(a) lnsert segment z, find its influence polygon (shaded); (h) connect all vertices of the 
influence polygon to node 'a'; (c) optimize triangulations by constrained Lawson's LOP 
swapping: ( d )  refined triangulations with constraint segments. 
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4. A complete Convex Hull Insertion algorithm 
Several of the existing algorithms for Delaunay triangulation and their derivatives 

have been reviewed above in three categories as well as the insertion of constraint - 
segments. However, none of these algorithms provides boundary clipping when 
constraint exclusion boundaries are involved in the application. Hence, these . . 
algorithms are incomplete for T I N  creation problems with constraint boundaries. - 
Boundary clipping, o r  polygon clipping, is necessary and critical especially to 
contouring applications in which interpolations should be excluded from the exclusion - .. 

regions. Presented next is a complete algorithm which provides capabilities of both 
triangulation construction and boundary clipping for a set of planar points and 
constraints. 

Tsai and Vonderohe (1991j presented a generalized algorithm, the Conuex Hull 
Insertion algorithm, for the construction of Delaunay triangulations in the 
n-dimensional Euclidean space. Here the Conuex Hull Insertion algorithm is further 
improved and extended to construct the Delaunay triangulation of a set of points with 
pre-specified constraints. The improvement speeds the convex hull computation and 
the incremental insertion ofpoints and constraint segments by partitioning thedata set 
into cells and maintaining spatial primitives in topological data structures. Extended 
sub-algorithms for inserting constraint segments and boundary clipping are also 
presented, thus completing the solution for T I N  creation problems. 

For a set of N > 3  distinct planar points and M constraint segments in random 
distribution, the proposed algorithm completes the TIN construction in expected 
linear time, i.e. it runs in approximately O(N). However, it runs in O(N2) for the worst 
possible case. In this algorithm, both breaklines and exclusion boundaries are 
considered as constraint segments and their vertices are included in the set of points. 
The proposed Convex Hull Insertion algorithm involves the following phases: 

(1) Partition the point set into Nlk cells, i.e., m e q u i d i s t a n t  rows and columns, 
where k is the selected average number of points per cell (default k=4). 

(2) Find the Convex Hull of the partitioned set. 
(3) Construct the Delaunay triangulation of the Convex Hull by applying 

Delaunay criterion. 
(4) lteratively insert other points, which are not on the Conuex Hull, and refine the 

existing Delaunay triangulations. 
(5) Iteratively insert new constraint segments and refine existing Delaunay 

triangulations. 
(6 )  Remove all the triangles that are within the internal exclusion boundaries or 

outside the external exclusion boundaries. 

4.1. Initial data partitioning 
Partitioning the set of points into cells has been increasingly used in geometric 

algorithms for Voronoi tessellation and Delaunay triangulation. For examples, see 
Shamosand Hoey (1975), Lee and Schachter (1980), McCullagh and Ross(1980), Maus 
(1984), Dwyer (1987), Chew (1989) and Macedonio and Pareschi (199 1). Generally, the 
geographical partitioning process is a two-dimensional sort that enables fast access to 
points lying in proximity to others, thus improving the expected run time of the 
algorithm. However, sorting the points is lavish and unnecessary when data points 
should exist in the same order in which they are to be accessed. For example, in T I N  
models the vertices of constraint breaklines, exclusion boundaries, lines and triangles 



D
ow

nl
oa

de
d 

B
y:

 [N
at

io
na

l C
hu

ng
 H

si
ng

 U
ni

ve
rs

ity
] A

t: 
00

:0
8 

27
 D

ec
em

be
r 2

00
7 

Delaunay triangulations in TIN creations 

Cell Point 
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Figure 9. Cell partitioning on 12 randomly located points. (a) Partitioned cells; (b) cell and 
point structures. 

are often indexed to the points which retain the coordinates. Thus it is preferred in run- 
time programmes to leave the points unsorted such that these indices point to correct 
points while partitioning them into cells. 

A faster alternative is to create a one-dimensional array to store the index of the first 
point in each cell, then store along with each point the index of next point lying in the 
same cell (Larkin 1991). Figure 9 shows the partitioning cell structures of a simplified 
data set containing 12 points. The partitioning cell structures not only accelerate the 
computation of the Convex Hull, but also expedite the insertions of points and 
constraint segments. The larger the data set, the greater the saving of time. Partitioning 
points in this manner runs in linear time, or O(N), for a uniform distribution of points, 
but in O(N 2, for the worst possible case (Larkin 1991). Similar data structures are also 
used to store the centroids of triangles for quick search of triangles whose circumcircles 
enclose the inserted point or which intersect a constraint segment. 

4.2. Convex Hull computation 
The Convex Hull of a set of planar points is defined to be the smallest convex 

polygon containing them all and has the property that any line connecting two points 
inside the polygon must lie entirely inside the polygon (Sedgewick 1988). It is the 
natural extreme boundary of the point set and is equivalent to the shortest path 
surrounding the points. Obviously, the Convex Hull is part of the standard Delaunay 
triangulation of the set. 

By partitioning the set of points into cell structures, the Conuex Hull of the set can be 
found in expected linear time approximately proportional to N, i.e., O(N), for a 
uniform set and O(N ') for the worst possible case (Maus 1984, Larkin 199 1). Based on 
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Figure 10. Completion of the Convex Hull computation. ( a )  Initial boundaries 7.9, 12 and 6; 
(b) find hull vertices 11, 5 and 4; (c) the convex hull. 

the algorithm improved by Larkin (1991), the following procedures are involved in 
computing the Convex Hull of the partitioned set as depicted in figure 10. 

(A) Find the points with the minimum x - y ,  x f y ,  and maximum x - y ,  and x + y  
values respectively. These points are all on the Convex Hull perimeter 
and always lie near the four corners of the set, e.g., points 7, 9, 12, and 6 in 
figure 10(a). 

(B) Store these points in counterclockwise order in a linked circular list and remove 
any redundancy. 

(C) For each point I and its subsequent point J in the list call the recursive sub- 
algorithm_CONVEX(I, J) to find all the pointson the hull to the right of the line 
segment IJ. 

The recursive sub-algorithm CONVEX(1, J) 

(D) Examines all points lying in thecells that arc intersected by or tolhe right of the 
linesegment fi.and find the point K with thelargest offset from IJ, where points 
to the right of are assigned positive offsets and those to the left negative ones. 

(E) Tests the signof the largest offset: 

(i) if it is positive, insert K into the list between points 1 and J, and call 
CONVEX(1, K) and CONVEX(K, J). 

(ii) if it is zero and K lies between I and J ,  insert point K into the list between 
points I and J, and call CONVEX(1, K) and CONVEX(K, J). 

(iii) else terminate this call to CONVEX. 

4.3. Convex Hull triangulations 
The Delaunay triangulation of the Convex Hull itself can be found in a similar 

approach to the triangulation growth alogorithm described in $3.3. Given in 
counterclockwise order the vertices of the Convex Hull, eg., m for them which is usually 
far less than N for a random point set, the following procedures compute the Delaunay 
triangulation of the Conuex Hull in O!m2) as shown in figure I I: 

(A) Store the first edge o r  the convex hull in a list of base edges which is initialized 
empty. 

(B) For the next base edge, check the vertices lying to its left to find the third point 
by applying the Delauriay criterion. 
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Figure 1 I .  Cornple%of the Conuex H=angulation. (a)  ~ a s e  edge 7,; (b) base edge m; 
(c) base edge 4.12; (d )  base edge 12 , l l ;  (e)  base edge U) the triangulation. 

(C) Form the Delaunay triangle and append all internal edges to the list of base 
edges where new edges of the triangle are assigned as  from thefrom-node of the 
base edge to  the third point, and then to the to-node of the base edge. 

(D) Update the adjacent topologies of edges and triangles in the topological data 
structures, which are described later in $ 5  for practical implementations. 

(E) Repeat steps (B) to  (D) to  create all Delaunay triangles until all base edges are 
served. 

4.4. lnsertion of other points 
All other points within the Convex Hull can be added iteratively into the initial 

Delaunay triangulation of the Convex Hull. By finding the influence triangulation of 
the added point, existing triangulations are then locally refined. For a randomly 
distributed point set, the following procedures update the triangulation in expected 
linear time as  illustrated in figure 12: 

(A) Find all of the triangles whose circumcircles enclose the new point by applying 
Delaunay criterion, forming the influence triangulation of the new point. 
Finding such triangles is expedited through the use of a partitioning cell 
structure for the centroids of triangles, and the topological data structures that 
keep the adjacent relationships of edges and triangles. That is, find the first 
candidate triangle through the partitioningcell structure, and then find the rest 
outwardly by investigating its neighbouring triangles through the topological 
data structures. 

(B) Delete all internal edges shared by two adjacent triangles in the inftuence 
triangulation of the point. 



D
ow

nl
oa

de
d 

B
y:

 [N
at

io
na

l C
hu

ng
 H

si
ng

 U
ni

ve
rs

ity
] A

t: 
00

:0
8 

27
 D

ec
em

be
r 2

00
7 

V J .  D. Tsai 

Figure 12. Insertion of other points into the existing triangulations (shaded region shows the 
influence triangulation ofthe new point). (a)  Insert point I ;  (b) insert point 2; (c) insert point 
3; (d) insert point 8; (e) insert point 10; U) the triangulation. 

(C) Construct new edges and triangles by connecting the new point to the vertices 
of its influence triangulation. Note that Lawson's LOP is implicitly and 
automatically involved in this way. 

(D) Update the adjacent topologies of edges and triangles which are within o r  
adjacent to the refined influence triangulation of'the new point. 

(E) Repeat steps (A) to (D) until all other points within the Convex Hul l  are added. 

4.5. Insertion of constraint segments 
Once the Delaunay triangulation of the set of points has been constructed, 

constraint segments can be inserted into the triangulation to enforce breaklines and 
boundaries within the TIN model. As with the insertion of points, existing Delaunay 
triangulations are updated locally and densified by finding theinterseciing tri'angul- 
ation and intersecting points of the constraint segment. Intersecting points are added 
into corresponding intersecting triangulation of a constraint segment as virtual points 
since their coordinates and attribute values are interpolated from the constraint 
segment itself. Figure I3 shows the following procedures for the insertion of constraint 
segments: 

(A) Identify all of the triangles whose interiors intersect the constraint segment, 
computing the intersecting points and forming the intersecting triangulation of 
the segment. 

(B) Add the intersecting points into the list of virtual points. 
(C) Refine the intersecting triangulation of the segment with exactly the same 

procedures in the point insertion as described above by adding all virtual points 
into it. Note that only those triangles in the intersecting triangulation are 
refined. 
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'-....,'5 5 

(d) (4 
Figure 13, lnsertion of the constraint segment % in the Convex Hull lnsertion algorithm 

(shaded region shows the influence triangulation of the intersecting point). (a) Insert 
segment %, find its intersecting triangulation and intersecting points a, b, and c; (6) insert 
point a into the intersecting triangulation; (c) insert point b into the intersecling 
triangulation: (d) insert p o i n t ~ n t o $ e ~ t e ~ e c t ~ n g  triangulation: (e) refine triangulations 
with the constraint segment 25 as 2a, ab, bc, and c5. 

(D) Update the constraint segment by a series of short segments from thefiom- 
node, passing all of its intersecting virtual points, to the to-node of the constraint 
segment. 

(E) Repeat steps (A) to (D) until all constraint segments are added. 

4.6. Exclusion boundary clippings 
Exclusion boundaries include both internal and external areas. Internal exclusion 

boundaries may define regions within which interpolations should be omitted in a 
contouring application. Similarly, external exclusion boundaries define the extreme 
frame outside which interpolations and extrapolations are incorrect, uninteresting, or 
invalid. Thus, all triangles within the internal exclusion regions and outside the external 
frame should be removed from the constrained Delaunay triangulation. 

4.6.1. Internal boundary clipping 
Since the Delaunay triangulation is a connected planar graph, it is triggered to 

remove all triangles within an internal boundary by finding one of them and travelling 
through its neighbours. For all internal exclusion boundaries in the set, the following 
procedures tackle internal boundary clipping as illustrated in figure 14: 

(A) Store the first edge of an internal exclusion boundary in a list of deleting edges 
which is initialized empty. 

(B) For the next deleting edge in the list, delete the triangle lying on its left and 
append all other non-boundary edges of the deleted triangle to the list of 
deleting edges. 

(C) Update the adjacent topologies of the boundary edges and the triangles which 
are adjacent to the internal exclusion boundary. 

(D) Repeat steps (B) and (C) until all deleting edges are served. 
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\ ,  

Figure 14. _Completion of the internal boundary clipping. (a) Internal boundary; (b) deleting 
edge ab, delete triangle I;  (cideleting edge z, delete triangle 2; (d) deleting edge c, delete 
triangle 3; (e) deleting edgefd, delete triangle 4; (f) clipped boundary. 

4.6.2. External boundary clipping 
As shown in figure 15, external boundary clipping similarly involves the following 

procedures: 

(A) Store all edges of the Convex Hull that ate not edges on external boundaries in 
a list of deleting edges which is initialized empty. 

(B) For the next deleting edge in the list, delete the triangle lying on its left and 
append all other non-boundary edges of the deleted triangle to the list of 
deleting edges. 

(C) Update the adjacent topologies of the boundary edges and the triangles which 
are adjacent to the external exclusion boundary. 

(D) Repeat steps (B) and (C) until all deleting edges are served. 

5. Implementation 
The Convex Hull Insertion algorithm was implemented on personal computers 

using the C +  + computer programming language. Known features of the C +  + 
programming language, such as dynamic memory allocation and class objects, are fully 
utilized in the, implementation to keep the capability and flexibility in handling 
arbitrary collections of points and constraint boundaries. For example, as shown in 
figure 16, a C-like description of the topological data structures implemented in the 
program encodes the T I N  model as a set of topological relationships between points, 
edges and triangles. These data are all maintained in the extended memory blocks 
(above I megabyte) regardless of their sizes and dimensions, leaving the conventional 
memory area (below 640kilobyte) for run-time dynamic buffering and general 
computations. Thus, the number of points and constraints that can be handled in the 
program is limited by the amount of memory available in a personal computer. 
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Figure 15. Completion of the external boundary clipping. (a)  External boundaries without 
clipping; (b)  deleting edge %, delete triangle I; (c)  deleting edge be, delete triangle 2; ( d )  
deleting edge &, delete triangle 3; ( e )  clipped external boundary abcde; V) triangulations 
after internal and external boundury clippings. 

/******tt*****t.******************************* 

+ Topological data structures for TIN models * 
**t************t.******ttt*******ttt*******/ 

struct POINT { / *  Mass data points * /  
float xy[2]; /* X & Y coordinates * /  
long next; / *  Next POINT in cell * /  

1; 

struct EDGE { / *  Edges in TINS */  
long vt[2]; / *  From-node and To-Node * /  
long lr[2]; /* Left and Right TIN6 * /  

1; 

struct TIN { /* Delaunay triangles * /  
long ed[3]; / *  Bounded EDGES' indices * /  
long at[3]; / *  Adjacent TINS' indices * /  
float xc[2]; / *  X & Y of circumcenter * /  
float r2; / *  Square of circumradius * /  
long next; / *  Next TIN in this cell * /  

1; 

Figure 16. Topological data structures for TIN models. 
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For various distributions and sizes ofdata sets up to  50000points, table 2shows the 
execution times in seconds used by each phase in the Convex Hull Insertion program, 
running on a Hewlett Packard Vectra 486/66U personal computer. The execution time 
required for the program depends on the distribution and size of the point set, and the 
operating environment (including the central processing unit (CPU), the basic 
input/output system (BIOS), the disk operating system (DOS), memory and memory 
manager, etc.) under which the program runs. Although it may take O(N 2, time in the 
worst case, the statistics timing in table 2 indicates that the Convex Hull Insertion 
algorithm constructs the triangulations and associated topologies for T I N  models in 
approximately O(N for randomly distributed points and O(N'.277) for regular 
DEM grids. Meanwhile, run-time complexities of individual phases are also computed 
in table 2 to show the efficiency of the Convex Hull Insertion algorithm. T o  verify the - 
completeness and authenticity of the algorithm, figure 17 shows the resilting 
triangulations or 500 randomly spaced points and a 20 by 25 regular D E M  grids, 
respectively. 

Table 2. Execution times' of the Convex Hull Insertion algorithm for constructing Delaunay 
triangulations of various sets of points. 

Number Initial Data Convex Hull Convex Hull Other Points 
of Points Partitioning Computation Triangulation Insertion Total 

(N) (1) (2) (3) (4) (1)+(2)+(3)+(4) 

Notes: I. CPU time in seconds, excluding data input/output,for a Hewlett Packard Vectra486/66U 
personal computer (Intel 80486 DX2/66Mhz with 8Mb RAM, running under MS-DOS 5.0 and 
QEMM 386 6.0). 2. Number of points found on the convex hull ofthe set in convex hull computations. 
3. Run-time complexity, assuming t =coJ(N)=coNa, where t is the CPU time used, N is the number of 
points in the computation, co is a constant, and 'a' values obtained by least-squares fitting. 
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Figure 17. Triangulated irregular networks (TINs) of irregular and regular point sets. (a)  TINs 
of 500 randomly located points; (b) TINS of a 20 x 25 regular DEM grids. 

6. Conclusions 
Owing to its advantages in describing complex surfaces, the triangulated irregular 

network ( T I N )  model has been widely used in diverse applications in automated 
mapping, terrain surface modelling and analysis, and CIS. Since the Delaunay 
triangulation yields non-overlapping triangles as equiangular as possible, it is usually 
used to solve the problem of allocating points into T I N  models. Meanwhile, the 
Delaunay triangulation has all the prominent properties for an optimal T I N  model 
which provides multi-resolutional description of the terrain truth and ensures bounded 
errors on interpolation of attributes within the model. 

In this paper, definitions and basic properties of both standard and constrained 
Delaunay triangulations on the plane are discussed. In addition to providing brief 
review and categorization of existing Delaunay methods, this paper presents a 
complete Convex Hull Insertion algorithm to construct T I N  models for a set of planar 
points and constraints in expected linear time. Practical implementation and results 
from various sets of data up to 50000 points show that the proposed Convex Hull 
Insertion algorithm efficiently expedites the creation of T I N  models for regular DEM 
grids and irregularly spaced points in approximately O ( N S t 4 )  and O ( N ) ,  respectively. 
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Another advantage of the Convex Hull Insertion algorithm is that it is extendable to 
higher dimensions in which more complicated constraints and topological relation- 
ships may exist. For example, 3-D Delaunay tetrahedral tessellations are useful to 
3-D or volumetric CIS applications in which values of attributes at (x ,  y, z) locations 
need to be maintained and analysed in true 3-D geometry. The 3-D Delaunay 
tetrahedral tessellation would minimize the largest containment radius of the 
tetrahedron, resulting in the most compact tessellation of a set of points in the 3-D 
space. While T I N  models allow interpolations on surfaces only and 2.5-D views based 
on single-value attributes at (x ,  y)  locations, 3-D Delaunay tetrahedral tessellations 
permit additional true volumetric interpolations and operations on attribute values at 
(x ,  y, z )  locations, is., U = f (x ,  y, z).  With the extended Convex Hull Insertion algorithm, 
thc construction of 3-D Delaunay tetrahedral tessellations can be fostered and 
anticipated for a true 3-D CIS data model. 
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Appendix: Circumcircle computations 
For three non-collinear points, 1 = ( x l ,  y  ,), 2 = (x, ,  y,), and 3 = (x, ,  y3)  in the plane, 

the derivation of the circumcenter C=(x , , yJ  and the circumradius r  of their 
circumcircle follows (Tsai and Vonderohe 1991). 

By definition of the circumcircle of three distinct points, the following equations are 
solved for x,, y,, and r: 

Let S = C - I  = ( x , , y , ) = ( x , - x , , y , - y , ) ,  then 

( x z - x 1 ) 2 + ( ~ 2 - ~ 1 ) z  
( x 3 - . ~ l ) z + ( ~ 3 - ~ 1 ) 2  I (4)  

The unknown vector S=(x , ,  y,) in (4 )  is obtained by 

Hence the circumradius r and circumcenter C = ( x , ,  y,) are obtained by: 
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