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Abstract—This paper describes a Convex Hull Insertion algorithm for constructing the Delaunay
triangulation and the Voronoi diagram of randomly distributed points in the Euclidean plane. The
implemented program on IBM-compatible personal computers takes benefits from the partitioning of data
points, topological data structures of spatial primitives, and features in C+ + programming language such
as dynamic memory allocation and class objects. The program can handle arbitrary collections of points,
and delivers several output options to link with GIS and CAD systems. Empirical results of various sets
of up to 50,000 points show that the proposed algorithm speeds up the construction of both tessellations

of irregular points in expected linear time.
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INTRODUCTION

The spatial analysis of thematic variables is of signifi-
cant importance for the understanding of the charac-
teristics of these variables. Spatial adjacency
problems involving irregularly spaced points on a
plane usually require intensive calculations and com-
parisons of distances between data points. For
example, the problem of triangulating arbitrary col-
lections of points and the problem of determining the
site that is closest to a query point occur in many
applications in engineering, isarithmic mapping,
spatial process modeling, geographic information
systems (GIS), terrain modeling, finite-element analy-
sis, and computational geometry. This seems to in-
volve exhaustively checking the distance between
points in the set, but better solutions are possible by
constructing the Delaunay triangulation (Delaunay,
1934) and the Voronoi diagram (Voronoi, 1908) of
the given points for these applications.

The theory, computations, and applications of
Delaunay triangulations and Voronoi diagrams have
been described intensively in the literature (Lawson,
1972, 1977, Shamos and Hoey, 1975; Sibson, 1978;
Green and Sibson, 1978; Brassel and Reif, 1979;
Lee and Schachter, 1980; McCullagh and Ross,
1980; Bowyer, 1981, Watson, 1981; Mirante and
Weingarten, 1982; Sloan, 1987; Macedonio and
Pareschi, 1991; Kao, Mount, and Saalfeld, 1991;
Gold, 1989, 1992; Puppo and others, 1992). Most
recently, Aurenhammer (1991) provided a detailed
survey and bibliography on the Voronoi diagram and
related structures, emphasizing the unified exposition
of their mathematical and algorithmic properties.
Because the Delaunay triangulation and the Voronoi

diagram are geometric duals, it is desirable to discuss
briefly the theory and properties of both data struc-
tures. For standard and detailed sources, see Auren-
hammer (1991) and Preparata and Shamos (1985).

The Voroni diagram, or the Dirichlet tessellation
(Dirichlet, 1850) or Thiessen polygons (Thiessen,
1911), is one of the fundamental data structures in
computational geometry. It is a union of contiguous
polygonal regions whose boundaries are made up of
the perpendicular bisectors of the lines joining neigh-
boring points. The Voronoi diagram of N distinct
points on the plane divides the plane according to the
nearest-neighbor rule: each point is associated with
the region of the plane closest to it (Aurenhammer,
1991). The region, or the Voronoi polygon, associ-
ated with each point is unique, determined by the
spatial distribution of the points, and defines the
region of influence of that point (Hayes and Koch,
1984; Gold, 1989). On the other hand, the Delaunay
triangulation is constructed by connecting the points
whose associated Voronoi polygons share a common
edge. A Delaunay triangle thus is formed from three
adjacent points whose associated Voronoi polygons
meet at a common vertex, which is the center of the
circumscribed circle of the Delaunay triangle. Figure
1 depicts the duals of the Delaunay triangulation and
the Voronoi diagram for a set of twelve randomly
distributed points in the Euclidean plane.

This paper describes a fast algorithm, the Convex
Hull Insertion algorithm, for the construction of
Delaunay triangulations and Voronoi diagrams of
arbitrary collections of points on the Euclidean plane.
The proposed algorithm not only computes both
geometric structures, but also builds in a relational
data model the topologies of the spatial primitives in
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Figure 1. Delaunay triangulations (—) and Voronoi diagrams (——-) of 12 points in plane.

both structures. The proposed algorithm is Delau-
nay-based and has been implemented on IBM com-
patible personal computers (PCs) using Borland
C+ + 3.1. The remainder of this paper is devoted to
the description of the criteria of Delaunay triangu-
lation, technical procedures of the Convex Hull Inser-
tion algorithm, and the implementation including
topological data structures, data input and output,
and empirical examples. Results of various examples
up to 50,000 points indicate that the proposed Convex
Hull Insertion algorithm constructs both Delaunay
triangulations and Voronoi diagrams of randomly
distributed points in expected linear time, that is the
program runs in approximately O(N) for N ran-
domly distributed points.

CRITERIA OF DELAUNAY TRIANGULATION

Lawson (1972) suggested the max—min angle cri-
terion to construct triangulations with the /local
equiangularity property: in every convex quadrilateral
formed by two adjacent triangles, the replacement of
their common edge does not increase the minimum of
the six interior angles concerned. Based on the
max—min angle criterion, Lawson (1977) also gave a
local optimization procedure (LOP) to swap diagonals
of a convex quadrilateral for a locally optimal tri-
angulation. Figure 2 illustrates the completion of the
LOP swapping for a new point inserted into an
existing triangulation.

However, the Delaunay triangulation of a set of
points is an aggregate of adjoining but nonoverlap-
ping triangles such that the circumcircle of each
triangle contains no other point in its interior. This
property hereinafter is termed the Delaunay criterion
in the construction of Delaunay triangulations for a
set of distinct planar points. Both Lawson (1977) and
Sibson (1978) have observed that the Delaunay tri-
angulation automatically satisfies the max-min angle
criterion, and, uniquely, is locally equiangular.
Intimately, the max-min angle criterion implies the
Delaunay criterion when a triangulation is con-
structed by applying the LOP to all triangles of the
triangulation, until no diagonal swapping occurs.,
Consequently, the Delaunay criterion is used in the
following Convex Hull Insertion algorithm to con-
struct the Delaunay triangulation and then the
Voronoi diagram of a point set.

THE CONVEX HULL INSERTION ALGORITHM

Tsai and Vonderohe (1991) presented a generalized
algorithm, the Convex Hull Insertion algorithm, for
the construction of Delaunay triangulations in the
n-dimensional Euclidean space. Here the Convex Hull
Insertion algorithm is improved further and im-
plemented to construct the Voronoi diagram of a set
of planar points as well as the Delaunay triangu-
lation. The improvement expedites the convex hull
computation and the incremental insertion of points
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by partioning the point set into cells and maintain-
ing spatial primitives in topological data structures.

For a set of N = 3 distinct points in the Euclidean
plane, the Convex Hull Insertion algorithm involves
the following phases:

(1) Partition the point set into N/k cells, that is
Nk equidistant rows and columns, where k
is the average number of points per cell and
may be selected arbitrarily (default k = 4).

(2) Determine the convex hull of the whole point
set.

(3) Construct the Delaunay triangulation of the
convex hull by applying Delaunay criterion.

(4) Iteratively insert other points, which are not on
the convex hull, and refine the existing triangu-
lations.

(5) Construct the Voronoi diagram from the
Delaunay triangulation of the set.

Initial data partitioning

Partitioning the set of points into cells has been
used increasingly in geometric algorithms such as
Voronoi tessellation and Delaunay triangulation
(Shamos and Hoey, 1975; Lee and Schachter, 1980;
McCullagh and Ross, 1980; Maus, 1984; Dwyer,
1987; Macedonio and Pareschi, 1991). Generally, the
geographical partitioning process is a two-dimen-
sional (2-D) sort that enables fast access to points
lying in the proximity of others, thus improving the
expected run time of the algorithm. Sorting the
points, however, is opulent and superfluous when
data points should exist in the same order as what
they are to be accessed. Thus it is preferred in
run-time programs to leave the points unsorted while
partitioning them into cells. A faster alternative is to
create a 1-D array or list to store the index of the first
point in each cell, then store along with each point the
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index of next point lying in the same cell (Larkin,
1991). Figure 3 shows the partitioning structures of
the 12-point set shown in Figure 1. Partitioning
points in this manner accelerates the computation of
the convex hull, and runs in linear time, that is, O(N ),
for a uniform distribution of points, but in O(N?) for
the worst possible case (Larkin, 1991). Similar parti-
tioning structures also are used to store the centroids
of triangles for quick search of triangles, whose
circumgircles enclose the inserted point, in refining
the existing triangulations.

Convex hull computation

The convex hull of a set of planar points is the
natural extreme perimeter of the point set. Obviously,
edges of the convex hull are part of the Delaunay
triangulation of the set. Once the point set was
partitioned into cells, its convex hull can be computed
in approximately O(N ) for a uniform set and O(N?)
for the worst possible case (Maus, 1984; Larkin,
1991). Based on the algorithm improved by Larkin
(1991), the following procedures commute the
convex hull of the partitioned set as depicted in
Figure 4:

(a) Determine the points with the minimum x — y,
x + y, and maximum x — y, and x + y values,
respectively. These points are all on the convex
hull perimeter and lie as near as to the four
extreme corners of the set, for example, points
7,9, 12, and 6 in Figure 4A.

(b) Store these points in a linked circular list in
counterclockwise order and remove any redun-
dancy.

(c) For each point I and its subsequent point J in
the list, call the recursive subalgorithm CON-
VEX(I, J) to locate all the points on the hull to
the right of the line segment /J.

(A) Insert new point P and (B) Apply max-min angle (C) Updated triangulations

connect to vertices of

the enclosing triangle diagonals

criterion and swap

with circumcircles on
new triangles

Figure 2. Completion of Lawson’s LOP for inserting point P into triangulation in Figure 1.
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Figure 3. Partitioning structures of 12 points in Figure 1.

The recursive subalgorithm CONVEX(I, J) does: (i) if it is positive, insert K into the
list between points I and J, and
(d) Examine all points lying in the cells that are call CONVEX(I, K) and CONVEX
intersected by or to the right of the line segment (K, J).
[7, and locate the point K with the largest offset (ii) if it is zero and K lies between I and J,
from IJ, where points to the right of IJ are insert point K into the list between points
assigned positive offsets and those to the left I and J, and call CONVEX(I, K) and
negative ones. CONVEX(K, J).
(e) Test the sign of the largest offset: (iii) else terminate this call to CONVEX.

(A) Initial boundaries (B) Find hull vertices (C) The convex hull
7,9,12, and 6 11, 5,1, and 4

Figure 4. Completion of convex hull computation.
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Convex hull triangulation Insertion of other points

Knowing the M vertices of the convex hull in All other points within the convex hull can be
counterclockwise order, the following procedures inserted iteratively into the initial Delaunay triangu-
compute the Delaunay triangulation of the convex lation of the convex hull. By determining the influence

hull as shown in Figure 5: triangulation of the added point, existing triangu-

(a) Store the first edge of the convex hull in a list
of base edges which is initialized empty.

(b) For the next base edge, check the vertices lying
to its left to locate the third point by applying
Delaunay criterion.

(c) Form the Delaunay triangle and append all
internal edges to the list of base edges where
new edges of the triangle are assigned as from
the from_node of the base edge to the
third point, and then to the to_node of the base

edge.

(d) Update the adjacent topologies of edges and
triangles in the topological data structures,
which are described later in the implementation
section.

(¢) Repeat steps (b)-(d) to create all Delaunay
triangles until all base edges are served.

lations then are locally refined. The following pro-
cedures update the existing triangulations in expected
linear time as illustrated in Figure 6:

(a) Determine all of the triangles whose circumcir-
cles enclose the new point by applying Delau-
nay criterion, forming the influence triangu-
lation of the new point. Determining such
triangles is speeded through the use of a parti-
tioning cell structure for the centroids of tri-
angles and the topological data structures,
which keep the adjacent relationships between
edges and triangles. That is, locate the first
candidate triangle through the partitioning cell
structure, and then locate the rest by investi-
gating its neighboring triangles outwardly.

(b) Delete all internal edges shared by two adjacent
triangles in the influence triangulation of the
new point. This is done concurrently with

(A) Base edge 7,11 (B) Base edge 4,11 (C) Base edge 6,11

(D) Base edge 5,11 (E) Base edge 5,6 (F) Base edge 1,5
Figure 5. Completion of convex hull triangulation.
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(E) Delaunay triangulations

Figure 6. Insertion of other points into existing triangulations (shaded region shows influence triangulation
of new point).

step

(a) by pushing the edges of the enclosing triangles
into a dynamic linked list, and dropping (or
popping out of the list) the duplicate edges.

(c) Construct new triangles by connecting the new
point to the vertices of each boundary edge of
its influence triangulation. Note that Lawson’s
LOP is implicitly and automatically involved in
this way.

(d) Update the adjacent topologies of edges and
triangles that are within or adjacent to the
refined influence triangulation of the new point.

(e) Repeat steps (a)(d) until all other points
within the convex hull are inserted.

Construction of the Voronoi diagram

Because the Voronoi diagram and the Delaunay
triangulation are geometric duals, the Voronoi dia-
gram of N sites in the plane can be obtained in O(N')
time after the Delaunay triangulation was created.
Note that the adjacent topologies of edges and tri-
angles in the Delaunay triangulation are kept in the
topological data structures. It is trivial to form the
edges of the Voronoi diagram by connecting the
circumcenters (which are computed and stored in the

topological data structures for the Delaunay triangu-
lation) of the left and right triangles of each Delaunay
edge. For those Delaunay edges on the convex hull,
a perpendicular line that bisects the boundary edge is
computed outwardly from the circumcenter of the
only involving triangle. Meanwhile, topologies of
spatial primitives in the Voronoi diagram can be
easily maintained in similar topological data struc-
tures as those for the Delaunay triangulation.

IMPLEMENTATION

The Convex Hull Insertion algorithm has been
implemented for IBM-compatible PCs using Borland
C+ + 3.1. Features known for the C+ + program-
ming language, such as dynamic memory allocation
and class objects, are utilized fully in the implemen-
tation to keep the capability and flexibility of the
program in handling arbitrary collections of points in
the plane. Of the implemented code, the aforemen-
tioned partitioning structures and the topological
data structures for spatial primitives most signifi-
cantly dominate and speed up the construction of
Delaunay triangulations and Voronoi diagrams
accordingly. These topological data structures are
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described in detail in the next subsection, followed by
the data input and output of the implementation and
empirical results of various sets of up to 50,000
points.

Topological data structures

As shown in Figure 7, a C-like description of the
data structures implemented in the program encodes
the Delaunay triangulation as a set of topological
relations of points, edges, and triangles. Coordinates
of points are kept only in tuples of POINT, which
also maintains the index of the next point in the same
partition cell. Tuples of EDGE store the indices of the
from_node and to_node points, and the indices of the
left and right triangles of each edge. For each triangle
in the Delaunay triangulation, a tuple of TRI-
ANGLE maintains the indices of the bounded edges
and corresponding adjacent triangles, X and Y coor-
dinates of the circumcenter, square of circumradius,
and the index of the next triangle whose centroid falls
into the same partition cell. Such topological data
structures as well as the aforementioned partitioning
cell structures for points and triangles improve the
performance of the implemented program.

The number of points that can be handled in the
implemented program is limited by the amount of
memory available on the PC. As shown in Figure 7,
the sizes of each tuple of the POINT, EDGE, and
TRIANGLE data structures are 12, 16, and 40 bytes,
respectively. For N distinct points in the plane, of
which M lie on the convex hull, the Delaunay tri-

struct POINT /*
{
float =xy[2]; /*
long next; /*
Yi
struct EDGE /*
{
long ft[2]; /*
long 1r[2); /*
}i
struct TRIANGLE I*
{
long ed{3]; /*
long at[3]; /*
float xc[2]; /*
float r2; /*
long next; A
i

Figure 7. Topological data structures for construction
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angulation has 3(N — 1) — M edges and 2(N — 1) —
M triangles; the Voronoi diagram has 3(N - 1) - M
edges and 2(N — 1) computed points, including the
2(N —1)— M circumcenters of triangles and M
auxiliary points that lie outside the convex hull. Since
the POINT, EDGE, and TRIANGLE data structures
are shared by both Delaunay triangulations and
Voronoi diagrams, the amount of memory required
for the program can be calculated exactly once the
convex hull of the set was determined. For example,
up to about 1.34 MB of memory is required for
handling each 10,000 points in the set. In the im-
plemented program, tuples of POINT, EDGE, and
TRIANGLE are all maintained in the extended
memory blocks (above 1-MB) regardless of their sizes
and dimensions, leaving the conventional memory
(below 640-KB) for partitioning cell structures, run-
time dynamic buffering, and general computations.

Data input and output

The program assumes that the spatial coordinates
of points are Cartesian or Euclidean. It accepts input
data of points from text file in free format, that is,
each record (line) of the file lists the X and Y
coordinates of a point. On the other hand, there are
several output options in the program to present the
resulting Delaunay triangulations and Voronoi dia-
grams:

(1) Build a set of relational files in binary forms for
the topologies of data points, edges, and tri-
angles in the Delaunay triangulation;

Mass data points */

X & Y coordinates */
Next POINT in cell */

Edges in triangulation */
From_node and To_node */
Left & Right triangles */
Delaunay triangles */
Bounded EDGEs' indices */
Adj TRIANGLEs' indices */
X & Y of circumcenter */
Square of circumradius */

Next triangle in cell */

of Delaunay triangulations and Voronoi diagrams.
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Edge From Pt!' To_Pt' Lft TIN Rht TIN

Edge From Pt' To_Pt' Lft TIN Rht_TIN

1 7 11 1 0
2 7 4 0 2
3 2 1 2
4 4 6 0 12
5 2 11 8 1
6 2 4 2 3
7 10 2 1l 3
8 6 1 0 14
9 3 1 13 6
10 5 9 0 9
11 9 11 0 7
12 1§ 12 0 6
13 12 5 0 5

TIN Edgel Edge2 Edge3 Adj_TIN1

14 3 5 5 4
15 3 12 6 5
16 8 2 8 11
1) 8 9 9 7
18 8 11 7 8
19 10 6 12 14
20 8 3 10 4
21 8 5 9
22 10 4 3 12
23 10 8 10 11
24 10 3 13 10
25 10 1 14 13

Adj_TIN2 Adj_TIN3

1 3 1 8
2 6 3 2 3
3 22 7 6 12
4 21 20 14 9
5 14 15 13 4
6 15 9 12 5
il 18 17 11 8
8 18 16 5 7
9 17 21 10 7
10 24 23 20 13
11 7 23 16 3
12 19 22 4 14
13 25 24 9 14
14 25 19 8 13

1
11
10

6
13

9
11

4
11
10

3
10
12

o h O ® e O FHF OO o WU N o o

Note: 1 Data points in figure 1 with coordinates listed in figure 3

Figure 8. Edge and triangle topologies of Delaunay triangulation in Figure 1.

(2) Build a set of relational files in binary forms
for the topologies of data points, com-
puted points, and edges in the Voronoi dia-

gram;

(3) Create AutoCAD DXF (data exchange for-
mat) and script files for graphical represen-
tation of the Delaunay triangulation;

(4) Create AutoCAD DXF and script files for
graphical representation of the Voronoi dia-
gram;

(5) Display lists of data points, edges, triangles,
and associated topologies in the resulting
Delaunay triangulation on the screen, or to a
printer or a text file; and

(6) Display lists of data points, computed points
(including circumcenters of Delaunay triangles
and auxiliary points), edges, and associated
topologies in the resulting Voronoi diagram on
the screen, or to a printer or a text file.

These output options can be set individually or
simultaneously in the MS-DOS executable program
(CHIDTVD.EXE) as optional command-line argu-
ments, which also include input file name, number of
points per partitioning cell, and recording of ex-
ecution times used in each phase of the proposed
algorithm. Listing of spatial primitives and associated
topologies in text forms allows manual checking and
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verification of the resulting Delaunay triangulations
and Voronoi diagrams. Representation of Delaunay
triangulations and Voronoi diagrams in relational
tables provides interfaces to GIS packages for further
spatial analysis upon the topologies and associated
nonspatial attributes of spatial primitives. Further-
more, results in AutoCAD DXF and script files not
only allow visual verification of the resulting Delau-
nay triangulations and Voronoi diagrams, but also
provide another linkage to computer-aided drafting
(CAD) systems where powerful third-party utilities
are available for graphical rendering, contouring,
automated mapping as well as linking to GIS appli-
cations.
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Examples

To verify the completeness and authenticity of the
proposed Convex Hull Insertion algorithm, Figures 8
and 9 list resulting topologies of spatial primitives in
the Delaunay triangulations and Voronoi diagrams
for the 12-point set in Figure 1. Meanwhile, Figure 10
depicts resulting Delaunay triangulations and
Voronoi diagrams of 500 randomly spaced points by
importing corresponding DXF or script files in Auto-
CAD software, in which outer edges of the Voronoi
diagram were clipped.

For various data sets of up to 50,000 points, Table
1 shows the execution times in seconds used by the

Point! X Y Point! X Y

1 20,319 121.339 12 90.749 126.506

2 59.270 148.834 13 97.866 88.091

3 72.004 127.435 14 109.208 98.571

4 70.378 56.159 15 -14.368 130.%00

5 76.934 45.024 16 63.081 177.077

6 107.975 58.378 17 106.955 149.525

7 36.432 77. 571 18 141.484 104.760

8 43.113 97.086 19 31.088 30.563

9 46,358 59.817 20 -1.499 66.380
10 82.349 85.668 21 123.544 47.730
11 60.693 100.056 22 78.063 19.838

Edge From Pt!' To_Pt! Lft_DPt? Rht_DPt’ Edge From Pt' To_Pt' Lft DPt? Rht_DPt?

1 15 11 7 14 5 4 5 3
2 16 1 4 15 6 12 3
3 1 2 2 16 8 11 2 8
4 12 17 4 6 17 9 7 9 8
5 8 1 11 2 18 7 8 11 8
6 4 2 19 12 14 6 10
7 11 3 2 10 20 10 4 3 8
8 14 18 6 1 21 4 5 8
9 13 6 1 3 22 3 12 4 10
10 9 19 5 9 23 10 11 8 10
11 7 20 9 11 23 13 10 3 10
12 6 21 1 12 25 14 13 1 10
13 5 22 12 5

Notes: 1 Computed points, including the circumcenters (1-14) of Delaunay triangles in figure 8

and the outer vertices (15-22) of the Voronoi edges which fall outside the triangulation

2 Data points as shown in figure I with coordinates listed in figure 3(C)

Figure 9. Point and edge topologies of Voronoi diagram in Figure 1.
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Convex Hull Insertion program, running on a Hewlett
Packard Vectra 486/66U PC. The execution time
required for the program depends on the distribution
and size of the point set, and the operating environ-
ment (including the type of platform, disk operating
system, memory and memory manager) under which
the program runs. The higher level and the faster the
CPU (central processing unit), the less execution time
used for the program. For example, it takes about
90 sec for constructing Delaunay triangulations and
Voronoi diagrams of 10,000 points on an 80486
DX2/66 MHz PC, but it takes 615sec on an 80386
SX/20 MHz PC. Although it may take O(N ?) time in
the worst case for N distinct planar points, the timing
statistics in Table 1 show that the Convex Hull
Insertion program constructs the Delaunay triangu-
lation, the Voronoi diagram, and associated topolo-
gies in approximately linear time, that is, the overall
run-time complexities of the algorithm are O(N '%2)
for Delaunay triangulations and O(N'®®) for
Voronoi diagrams accordingly.

CONCLUSIONS

This paper has presented a nearly linear-time algor-
ithm, the Convex Hull Insertion algorithm, for the

V. J. D. Tsal

construction of Delaunay triangulations and Voronoi
diagrams of arbitrary collections of points in the
Euclidean plane. The algorithm takes benefits from
partitioning data points into cells and from maintain-
ing spatial primitives in topological data structures.
The algorithm has been implemented on IBM com-
patible PCs using Borland C+ + 3.1; the program
can handle large sets of points as long as sufficient
memory is available on the PC. Empirical results
from various sets of up to 50,000 points show that the
program runs in approximately O(N) for N ran-
domly spaced points. Moreover, the program delivers
several output options; thus provides linkages to GIS
and CAD systems for advanced spatial analysis and
mapping applications.

An archived file, CHIDTVD.ZIP for this work, is
available by anonymous ftp from shelf.ersc.wisc.edu
(128.104.83.146) in the pub directory subject to non-
profit and noncommercial purposes. The archived file
contains several example data files, a brief document
(CHIDTVD.DOC), and the MS-DOS executable
program (CHIDTVD.EXE) of the Convex Hull In-
sertion algorithm by the author. A brief help for the
usage of the CHIDTVD.EXE program can be dis-
played by running the program with either “?” or
“/h” option.

| T = -y T < T T
] 'I \ I | / \\ ] }*
[ \ I 1 e i o
i \ | ] \ ] ‘{ ~
I I 9 A \ ! I
b -
= - - \ ~\\
S | ~ 7 ~
| == = { \\\l
-_.,_______‘“- 7 \ ra ,}' '\\\
"""'-.‘_ = - ----.:,_\_-.:
-~
| & - & ...--;'/’ |
- e ~,
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l‘_‘_ - —\ /,aﬂ
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Figure 10. Delaunay triangulations (—) and Voronoi diagrams (---) of 500 points by proposed Convex
Hull Insertion algorithm.
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Table 1. Execution times' of Convex Hull Insertion algorithm for constructing Delaunay triangulations and
Voronoi diagrams of various sets of randomly spaced points on plane

Number Delaunay Triangulations V_oronoi
of Points Diagrams
Initial Data Convex Hull Convex Hull | Other Points Total
Partitioning Computation Triangulation Insertion 5) =
N) ) @ (3) @ (DH2)H(GYHE) (6)
1,000 0.085 0.037 (16)? 0.014 8.203 8.339 0.121
2,000 0.171 0.062 (20) 0.017 16.497 16.747 0.247
3,000 0.266 0.083 (17) 0.014 25.485 25.848 0.376
4,000 0.369 0.110 (1e) 0.014 34.562 35.055 0.505
5,000 0.448 0.129 (19) 0.016 42,880 43.473 0.620
6,000 0.581 0.149 (15) 0.014 52.043 52.787 0.758
7,000 0.679 0.174 (19) 0.015 60.349 61.217 0.892
8,000 0.774 0.190 (22) 0.01% 68.965 69.948 1.018
9,000 0.869 0.224 (25) 0.022 77.486 78.601 1.149
10,000 1.059 0.251 (26) 0.022 88.429 89.761 1.274
20,000 2.742 0.492 (20) 0.016 185.180 198.430 2.557
30,000 3.473 0.781 (26) 0.027 278.162 282.443 3.736
40,000 3.590 0.978 (31) 0.029 348,396 352.993 4,964
50,000 4,519 1.195 (32) 0.033 438.788 444,535 6.205
a’ 1.052 0.876 1.015 1028 | 1032 | 1008

!CPU time in seconds, excluding data inputfoutput, for a Hewlett Packard Vectra 486/66U PC (Intel 80486

DX2/66 with 8 Mbytes RAM, under MS-DOS 5.0 and QEMM 386 6.0).
3Number of points located on the convex hull of the point set.
}Overall run-time complexity in O(N “), ‘a’ values obtained by least-squares fitting.
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