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The study analyzes the spatial persistence and temporal patterns in vegetation cover
across Florida by utilizing the Normalized Difference Vegetation Index (NDVI)
time-series data derived from the Advanced Very High Resolution Radiometer from
1982 to 2006. Specifically, mean-variance analysis and persistence metrics are used
to discern the significance of vegetation patterns, the significance of land cover and
land-use change, and the relevance of climate variability across time and space.
Results demonstrate a consistent, increasing pattern in the mean NDVI and its vari-
ance, especially during the late fall and winter season. A possible explanation of this
increasing pattern is based on the Atlantic Multidecadal Oscillation, which switched
from cold to warm phase after 1995 and is associated with increased winter precipi-
tation. Additionally, the impacts of the El Niño Southern Oscillation can be detected
through the decreased spatial variances of NDVI in warm-phase events, compared
to cold-phase events, and the more pronounced nature of the pattern in fall/winter.
This study proposes a novel set of techniques applied to satellite-derived vegetation
data, which effectively discerns fine, statewide vegetation dynamics at appropriate
spatial and temporal scales.

Keywords: NDVI; mean-variance analysis; spatial persistence analysis; climate
variability; land-cover change

1. Introduction

The Earth’s terrestrial surface is being transformed and altered by humans in unprece-
dented fashion in terms of pace, magnitude, and spatial reach (Lambin et al., 2001).
Land use and land-cover change (LULCC) is the conversion and modification of the
Earth’s surface (DeFries, Field, Fung, Collatz, & Bounoua, 1999; Lambin & Ehrlich,
1996; Matthews, Weaver, Meissner, Gillett, & Eby, 2004; Turner et al., 1995) and its
study is necessary for the maintenance of a healthy-functioning Earth (Baumann et al.,
2011; de Chazal & Rounsevell, 2009; Drummond & Loveland, 2010; Eugenio,
Richards, Walker, & Caldas, 2011; Feddema et al., 2005; Grimm et al., 2008; Lambin
et al., 2001; Turner et al., 1995; Veldkamp & Lambin, 2001). An interdisciplinary
framework referred to as Land Change Science (LCS) (Gutman et al., 2004; Lambin &
Geist, 2006; Turner, Lambin, & Reenberg, 2007) utilizes environmental and human
geography, and remote sensing/geographical information system (GIS) science to
address questions concerning LULCC and the impacts of the changes on humankind
and the environment, as an integrated science (Bounoua, DeFries, Collatz, Sellers, &
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Khan, 2002; DeFries et al., 1999; Friedl et al., 2010; Gutman et al., 2004; Lambin
et al., 2001; Rindfuss, Walsh, Turner, Fox, & Mishra, 2004; Shalaby & Tateishi, 2007;
Southworth, Cumming, Marsik, & Binford, 2006; Turner et al., 2007; Xiao et al.,
2006).

Vegetation performs valuable environmental functions: (1) conversion of the Sun’s
energy to forms usable by humans and other animals via photosynthesis (Allen et al.,
1987; Choudhury, 1987; Gu et al., 2003; Running & Nemani, 1988), (2) provision of a
major sink of carbon that would otherwise reside in the atmosphere, thereby regulating
climate (Cao & Woodward, 1998; King, Post, & Wullschleger, 1997), (3) extraction of
nitrogen as a step in transforming fairly inert atmospheric nitrogen to forms essential
for growth (Bobbink, Hornung, & Roelofs, 1998; McGuire et al., 1992), and (4)
transfer of water from subsurface stores to the atmosphere thereby maintaining precipi-
tation and surface water flows (Bosch & Hewlett, 1982; Porporato, Laio, Ridolfi, &
Rodriguez-Iturbe, 2001; Stephenson, 1990). The accelerating pace of LULCC in the
past 50 years is of concern for biodiversity, climate regulation, and ecosystem services
(DeFries, 2008; Foley et al., 2005) through its effects on net radiation, division of
energy into sensible and latent heat, and partitioning of precipitation into soil water,
evapotranspiration, and runoff (Foley et al., 2005) as evidenced by real-world examples
(Bonan et al., 2002; Cuo, Lettenmaier, Alberti, & Richey, 2009; Feddema et al., 2005;
Kalnay & Cai, 2003) and model simulations (Chase, Pielke, Kittel, Nemani, &
Running, 2000; Marshall, Pielke, Steyaert, & Willard, 2004; Matthews et al., 2004;
McAlpine et al., 2009; Wilson & Henderson-Sellers, 1985). A recent analysis suggests
that anthropogenic impacts coupled with changes in seasonal and annual precipitation
patterns can have dramatic widespread effects on ecosystem structure and function
(Kaplan, 2012), but interactions between LULCC, climate variability, and vegetation
dynamics are not easily explainable by any simple theory or model (National Research
Council, 2005) and their representation remains a key challenge.

Remote sensing techniques furnish efficient tools with which to present a spatially
and temporally consistent picture of land surface conditions (Bartholomé & Belward,
2005; Friedl et al., 2010; Gould, 2000; Lambin & Geist, 2006; Stow et al., 2004;
Townshend, Justice, Li, Gurney, & McManus, 1991) and have been used increasingly
in LCS to improve the observation and monitoring of land surface changes (Duncan,
Shao, & Adrian, 2009; Gao, 1996; Gould, 2000; Tang, Li, & Tang, 2010; Townshend
et al., 1991; Weng, 2002; Wu, Zhou, & Li, 2009; Zhou, Li, & Kurban, 2008). Major
benefits of remote sensing are its ability to (1) collect standardized repeat measurements
of the Earth’s surface status and change (DeFries, 2008; Turner et al., 2003), (2) differ-
entiate the character of environmental change, (3) determine the spatial location and
spatio-temporal variation of environmental change, and (4) derive associations with
potential driving variables (Southworth, Munroe, & Nagendra, 2004). Discrete and con-
tinuous remote sensing techniques are commonly applied in LCS research, both have
advantages and limitations. The discrete approach, such as land-cover classification,
requiring definition of precise classes based upon objective criteria (Di Gregorio &
Jansen, 1998), is simple and clear but fails to quantify land surface heterogeneity
adequately (Colditz, Schmidt, Conrad, Hansen, & Dech, 2011). The continuous
approach applies original remotely sensed data or derived indices, such as a vegetation
index, which can be directly linked to land surfaces processes (Southworth et al.,
2004), but introduces issues such as spatial autocorrelation, leading to less clear-cut
interpretations. An optimal method of analysis is one that minimizes the limitations of
each while preserving their strengths, when using them in combination.
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The Normalized Difference Vegetation Index (NDVI) is a commonly used continu-
ous remotely sensed data product (Anyamba & Tucker, 2005; Fensholt & Proud, 2012;
Gutman, 1999; Jacquin, Sheeren, & Lacombe, 2010; Lee, Yu, Price, Ellis, & Shi, 2002;
Lu, Raupach, McVicar, & Barrett, 2003; Markon, Fleming, & Binnian, 1995; Pettorelli
et al., 2005), which provides valuable information about plant phenology (de Jong, de
Bruin, de Wit, Schaepman, & Dent, 2011; Jakubauskas, Legates, & Kastens, 2002; Lee
et al., 2002; Lu et al., 2003; Martínez & Gilabert, 2009; Menzel, 2000; Sakamoto
et al., 2005; Wang et al., 2004; Wardlow & Egbert, 2008), net primary productivity
(Fuller, 1998; Hill & Donald, 2003; Ricotta, Avena, & De Palma, 1999), and the effects
of LULCC (Immerzeel, Quiroz, & de Jong, 2005; Li, Kustas, Prueger, Neale, &
Jackson, 2005; Scanlon, Albertson, Caylor, & Williams, 2002; Wessels, Prince, Frost,
& van Zyl, 2004). Established time-series approaches are being adapted to address
intra- and inter-annual variations in these sorts of Earth Observation data (Anyamba &
Tucker, 2005; Eklundh & Olsson, 2003; Fensholt, Rasmussen, Nielsen, &
Mbow, 2009; Helldén & Tottrup, 2008; Jeyaseelan, Roy, & Young, 2007; McCloy,
Los, Lucht, & Højsgaard, 2005; Myneni, Keeling, Tucker, Asrar, & Nemani, 1997;
Neeti et al., 2011; Olsson, Eklundh, & Ardö, 2005). The National Oceanic and Atmo-
spheric Administration (NOAA) data-set of NDVI has been used for regional- to
global- scale analysis of vegetation patterns (Anyamba & Tucker, 2005; Jeyaseelan
et al., 2007; Olsson et al., 2005) and, given its relatively fine spatial resolution and
lengthy (since 1981) temporal coverage, (Anyamba & Tucker, 2005; Fensholt et al.,
2009; Myneni et al., 1997; Neeti et al., 2011), accords an excellent opportunity to
employ time-series approaches to vegetation research.

Numerous methods have been developed to interpret NDVI time series, including
functions fitted to time-series data (Jonsson & Eklundh, 2002), signal-noise discrimination
(Millward, Piwowar, & Howarth, 2006), and the breaks for additive seasonal and trend
method to detect seasonal and gradual changes within the time series (Verbesselt,
Hyndman, Newnham, & Culvenor, 2010). Other techniques include principal components
analysis (Anyamba & Eastman, 1996), fast Fourier transforms (Azzali & Menenti, 2000),
change-vector analysis (Lambin & Strahlers, 1994), and harmonic analysis (Jakubauskas
et al., 2002). However, many of these employ some form of transformation of the original
time-series data and present challenges in labeling and identifying change components
(Verbesselt et al., 2010). Waylen, Southworth, Gibbes, and Tsai (in press) propose some
simple statistical tests to determine the significance of land-cover changes reflected in
three separate persistence metrics designed to distinguish landscape changes on a pixel-
by-pixel basis. These metrics are designed to capture the direction (increase/decrease) and
magnitude of change in NDVI, taking into account seasonal changes and the gradual and
abrupt changes likely in ecosystems (Verbesselt et al., 2010), to identify areas of climati-
cally or anthropogenically induced alterations. This research applies this methodology to
a time series of NDVI from 1982 to 2006, along with mean-variance analysis (Pickup &
Foran, 1987), to identify seasonal and inter-annual variability in vegetation dynamics and
the significance of LULCC in Florida. These methods allow for a characterization of veg-
etation dynamics and the relevance of LULCC in a spatially explicit manner, while also
providing a picture of NDVI seasonality and its response to climate and disturbance
(Washington-Allen, Ramsey, West, & Norton, 2008; Washington-Allen, West, & Ramsey,
2003; Zimmermann et al., 2007).

Vegetation structure and pattern has been studied intensively in several regions such
as Everglades National Park (Gaiser, McCormick, Hagerthey, & Gottlieb, 2011; Huang,
Saiers, Harvey, Noe, & Mylon, 2008; Todd et al., 2010), South Florida (LaRoche &
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Ferriter, 1992; Menges & Deyrup, 2001; Ross, Ruiz, Sah, & Hanan, 2009), and in
specific ecosystems (Haile, Nair, & Nair, 2010; Harley, Grissino-Mayer, & Horn, 2012;
Sitch et al., 2003; Smith & Pain, 2009). However, there is no comprehensive, state-
wide, overview of patterns of vegetation and change. An evaluation of spatial and tem-
poral patterns of vegetation cover, and change statewide is required to establish
benchmarks and enhance understanding of long-term environmental changes. Specific
research questions addressed are: (1) What are the patterns of LULCC across Florida
between 1981 and 2006? (2) How do these patterns vary with season, climate zone,
and LULCC class? and (3) Do persistence analyses and associated tests contribute
meaningfully to this understanding and to studies of future vegetation dynamics?

2. Study area

The population of Florida (Figure 1) increased by over 16 million between 1940 and
2010 (US Census Bureau, 2012), so that the state currently supports a population den-
sity of over 135/km2 on its 138,887 km2 area. These changes, in combination with
climate variability, have led to direct and indirect impacts on LULCC and vegetation

Figure 1. The six climate divisions of Florida employed in the study. Throughout the text, the
Northwest division is referred to as climate division 1, North as climate division 2, North Central
as division 3, South Central as division 4, Everglades and SW Coast as division 5, and Lower
East Coast as division 6.
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dynamics, transformed by agriculture, urbanization, and the diversion of surface water
features (Marshall et al., 2004).

Dominant drivers of Florida’s climate include latitude, land and water distribution,
prevailing winds, storms, pressure systems, and ocean currents. Most of the state lies
within the southerly extreme of the humid subtropical climate zone, noted for its long
hot, humid summers and mild, wet winters. Southernmost parts of the state are gener-
ally designated as tropical savanna, or wet and dry tropics (Henry, Portier, & Coyne,
1994). Annual precipitation averages approximately 1350 mm with the panhandle and
southeast being wettest, and the Florida Keys and Cape Canaveral area, the driest. The
panhandle and north receive winter frontal and summer convective rains, with frontal
influence declining southward (Henry et al., 1994; Jordan, 1984). Position and intensity
of the Azores-Bermuda High Pressure system exerts a powerful influence on peninsular
Florida’s weather during the winter. Summer rainfall commences in the southeast in late
April and moves northward, while the fall dry season begins in the north in late Sep-
tember and spreads south, arriving in south Florida in mid-November. Tropical storms
can play an important role in the summer rainfall and may postpone the arrival of the
dry season. On average, the North Atlantic hurricane season peaks in August/Septem-
ber, and the extensive coastline makes the state prone to impacts of land-falling tropical
systems.

Large-scale, low-frequency causes of climate variability should be considered in
such a time-series-based study. The regional relationship with El Niño Southern
Oscillation (ENSO) has been studied extensively (Abtew & Trimble, 2010; Gischler,
Hudson, & Storz, 2009; Hansen, Hodges, & Jones, 1998; Jagtap et al., 2002; Misra &
DiNapoli, 2012; Schmidt, Lipp, Rose, & Luther, 2001; Schmidt & Luther, 2002).
Although seated in the equatorial Pacific, ENSO causes shifts in the position of the
sub-tropical and polar jet streams that steer frontal systems across North America.
During warm phases of ENSO (El Niño), Florida typically experiences 30–40% more
winter rainfall and cooler temperatures, while cold phases (La Niña) bring warmer,
drier winters and springs, which frequently trigger drought and wildfires (Harrison,
2013). The exact nature and timing of the changes vary across the state.

NOAA divides Florida into seven climate divisions, which are generally considered
to constitute climatically homogeneous regions (Keim, Fischer, & Wilson, 2005)
(Figure 1). Six are examined in this research, with the Florida Keys (division VII)
excluded due to its distinct local climate and limited surface area relative to the
resolution of the remote sensing data.

3. Methods

3.1. NDVI vegetation cover data

Analyses of seasonal and inter-annual vegetation dynamics and patterns are based on
the NDVI data derived from sensors aboard the NOAA polar-orbiting satellite series
(NOAA-7, 9, 11, 14, 16, and 17). The vegetation index is a function of radiation
absorbed by chlorophyll in the red band and scattering by cellulose in the near infrared,
and is a variant of the simple ratio of the near-infrared and red bands defined as:

NDVI ¼ Near Infrared� Red

Near Infraredþ Red
: (1)
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By computing the ratio as the difference of the two wavelengths over the sum of the
two wavelengths, NDVI is normalized, so that the range falls between −1 and +1. High
values (closer to +1) indicate abundant healthy green vegetation and values near or
below zero indicate an absence of vegetation (Warner & Campagna, 2009). The index
is widely accepted as an indicator of vegetation properties and used to assess ecological
response to environmental changes over broad geographic regions (Anyamba &
Eastman, 1996; Barbosa, Huete, & Baethgen, 2006; Bégué, Vintrou, Ruelland, Claden,
& Dessay, 2011; Carlson & Ripley, 1997; Gurgel & Ferreira, 2003; Jarlan, Tourre,
Mougin, Philippon, & Mazzega, 2005; Li & Kafatos, 2000; Meng, Ni, & Zong, 2011;
Pettorelli et al., 2005; Philippon, Jarlan, Martiny, Camberlin, & Mougin, 2007).

The Advanced Very High Resolution Radiometer GIMMS NDVI data-set, from
July 1981 to December 2006, has been used for numerous regional- to global-scale
vegetation studies (Anyamba & Tucker, 2005; Fensholt et al., 2009; Hogda, Karlsen, &
Solheim, 2001; Los, Justice, & Tucker, 1994; Milesi et al., 2010; Raynolds, Walker,
Epstein, Pinzon, & Tucker, 2012; Tucker et al., 2005; White & Nemani, 2006), and
has been corrected for numerous potential errors such as residual sensor degradation
and sensor inter-calibration differences. The spatial resolution is 8 km and the data
record is based on 15-day composites of the maximum-recorded NDVI to construct
cloud-free views of the Earth. The state boundary covering the domain 25–30°N,
79–87°W is subset from the data-set for the period January 1982–December 2006.
Since the data-set was constructed based on 15-day maximum composites, two such
composites occur each month. For this study, the higher value composite is chosen to
represent the value for the month.

3.2. NOAA CCAP land-cover classification data

Florida land-cover classification data are available from the Coastal Change Analysis
Program (C-CAP) developed by NOAA in collaboration with the Department of Com-
merce, National Ocean Service and NOAA Coastal Services Center. Current production
of the C-CAP land-cover data-sets is accomplished through closely coordinated efforts
with the United States Geological Survey, which produces the National Land Cover
Data-set. Since C-CAP data are developed primarily from Landsat Thematic Mapper
satellite imagery, the spatial resolution is 30-m pixels on the ground. Current C-CAP
data-sets are available for Florida in the years 1996, 2001, and 2006 for land cover and
land use across 23 classes. To simplify for the following analyses, the classes were
regrouped into 10 broader classes (Table 1). These classes are: (1) developed land, (2)
agricultural land, (3) grassland, (4) forested land, (5) scrub land, (6) palustrine wet-
lands, (7) estuarine wetlands, (8) barren land-unconsolidated shore, (9) barren land, and
(10) water and submerged lands. Pixels remaining in the same land-cover class on all
three observation dates are extracted for later use as a control data-set.

3.3. Mean-variance analysis

Mean-variance analysis (Pickup & Foran, 1987) characterizes the spatiotemporal behav-
ior of remotely sensed vegetation indices and has been used to describe seasonal and
inter-annual responses of vegetation to climate and disturbance in several regions
(Washington-Allen et al., 2008, 2003; Zimmermann et al., 2007). The mean can be
interpreted as indicating the overall amount of vegetation within the landscape and the
variance as the degree of landscape heterogeneity.
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Figure 2 depicts hypothetical relationships between mean-variance and vegetation
status (Washington-Allen et al., 2008). Each quadrant demonstrates differing degrees of
heterogeneity (variance) and vegetation status (mean). Exact interpretations depend on
the type of landscape and research design. Broadly, Quadrant 1 (low mean and
variance) represents the most degraded landscape, with homogeneously low amounts of
vegetation. Quadrant 2 (low mean and high variance) suggests that a high proportion
of the landscape tends towards bare ground and is thus susceptible to disturbance.
Quadrant 3 (high mean and low variance) implies greater, homogeneous vegetation
cover, and Quadrant 4 (high mean and variance) indicates the landscape possesses both
higher vegetation cover and a higher spatial variability. The “ideal” quadrant depends
on the dominant land-cover classes. For example, climate divisions 1 and 2 have large
proportions of forest, for which the ideal quadrant could be Quadrant 3 (high mean and
low variance). The approach permits the description of the trajectory of vegetation
across the 25-year time period in terms of both its mean and variance. In addition to
the monthly data, patterns are examined at two temporal scales: annual (cumulative
monthly NDVI from January to December), and seasonal for fall/winter (accumulation
over October–March) and spring/summer (April–September).

3.4. Persistence metrics

Three persistence metrics are adopted from Waylen et al. (in press). Directional and rel-
ative directional persistence are designed to capture the direction of increase/decreases
in NDVI, and massive persistence measures the magnitude of changes. It is assumed

Table 1. CCAP land-cover classes and regrouped classes employed in this study with their land
areas (%) in Florida.

Original class Regrouped class

Land area (%)

1996 2001 2006

Developed high intensity Developed land 9.50 10.40 10.60
Developed medium intensity
Developed low intensity
Developed open space
Cultivated crops Agricultural land 17.50 17.30 17.10
Hay/pasture
Grassland/herbaceous Grassland 3.50 3.50 3.90
Deciduous forest Forest land 18.00 17.50 16.20
Evergreen forest
Mixed forest
Scrub/shrub Scrub land 7.80 7.70 8.50
Bare land Barren land 0.40 0.50 0.70
Palustrine forested wetland Palustrine wetlands 36.1 36.0 35.8
Palustrine scrub/shrub wetland
Palustrine emergent wetland
Estuarine forested wetland Estuarine wetlands 3.10 3.10 3.10
Estuarine scrub/shrub wetland
Estuarine emergent wetland
Unconsolidated shore Unconsolidated shore 0.03 0.03 0.03
Open water Water and submerged lands 3.90 3.90 4.00
Palustrine aquatic bed
Estuarine aquatic bed
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that without any disturbances to surface vegetation (e.g., LULCC, climate variability,
land-cover modification), values of NDVI are normally distributed and serially indepen-
dent (i.e., independent from one year, season, or month to the next, e.g., January 1982
and January 1983). Based on the null hypothesis, statistical significance levels of all
three metrics can be established in order to highlight areas that have experienced
unusual changes.

3.4.1. Directional persistence

This metric, D, captures the cumulative directional change over the time series relative
to the first observation and is determined as follows:

Dj ¼
Xn

i¼2

ti;j (2)

V1;j\Vi;j : ti;j ¼ þ1

V1;j [Vi;j : ti;j ¼ �1

where Vi,j is the monthly value of NDVI, in year i, month j. A value +1 is assigned, if
a pixel records a value of NDVI greater than the base observation; and −1 is assigned
if less. However, the directional persistence measure should be interpreted with care as
it is a function of the base year selected for the analysis, which must be either (1) a sci-
entifically valid selection based on criteria or set rationale, such as investigating the
impact of an event on a landscape, like recovery time post drought, or (2) verifiably
“typical” e.g., not a flood year or drought year, as this would significantly impact the
results. In this application, values at the start of this series may reflect impacts of the

Figure 2. Hypothetical relationship between mean-variance of a vegetation and vegetation status
[adapted from Washington-Allen et al. (2008)]. The X-axis represents the mean of a specific
vegetation index while the Y-axis represents the variance over space. Each quadrant indicates the
status of a landscape.
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shift in global circulation in the late 1970s (Deser, Phillips, & Hurrell, 2004), and the
base year, 1981, is fairly “typical” in terms of precipitation climate, classified as a neu-
tral ENSO year (COAPS, 2014).

3.4.2. Relative directional persistence

The metric, R, makes directional comparisons relative to the observation in the preced-
ing year rather than a base value, for example the observation in May 1988 is compared
to that of May 1987, and therefore reflects sequential cumulative directional change:

Rj ¼
Xn

i¼2

ti;j (3)

Vi;j\Viþ1;j : ti;j ¼ þ1

Vi;j [Viþ1;j : ti;j ¼ �1

and is free of some of the restrictive assumptions concerning the base value which
might influence D. The two measures provide valuable, complementary landscape-scale
measures.

3.4.3. Massive persistence

The prior measures only account for the direction of change and not its magnitude and
are therefore insensitive to abrupt “step” changes in a series as opposed to more mono-
tonic changes. The massive persistence variable, M, also incorporates the magnitude:

Mj ¼
Xn

i¼2

Viþ1;j � Vi;j

� �
(4)

However, it introduces new statistical challenges as the variance of NDVI needs to be
considered when computing statistical significance (the other two reduced to standard
normal distributions). Thus, the metric can only be evaluated for a particular type of
LULCC, at a set time of year, and for a particular climate division, all of which could
impact the variance, and therefore magnitudes, of sequential steps. As such, it is not
transferable across regions and needs ancillary data for its use.

The original GIMMS data are scaled from −1000 to +1000 and therefore truncate
values of NDVI to three decimal places. Theoretically, the probability of identical
sequential values of NDVI is zero; however, formated in this way, they can occur,
resulting in zero change in the two directional metrics. To resolve a direction of change
for the 1.09% of occasions when this is an issue, a GIS technique is employed to
assign a value based on the majority of values from the surrounding 5 by 5 window of
pixels.

4. Results

4.1. Mean-variance analysis

Both mean annual NDVI and its spatial variance (Figure 3) exhibit slight increases
from the 1980s to 2000s. In the 1980s, annual values were highly variable, covering all
four quadrants, although the lowest mean NDVI is found in 1982. The dominant
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pattern of vegetation cover in the decade however, is one of low variance and low to
high mean, with means increasing in the later years. The early 1990s continued this
pattern up through 1992–1994, when the values revert to lower mean and variance.
Post-1994, increases in mean and variance are amongst the highest – reflecting signifi-
cant growth rates and high variability across the state. High values of the mean are
maintained in the 2000s and variance is moderate to high, especially later in the dec-
ade. The increase in both mean and variance across the state is marked (Figure 3). A
similar pattern emerges in the winter data (Figure 4(a)); however, summer NDVI
evinces no clear pattern (Figure 4(b)). As would be expected, mean values are gener-
ally higher during summer and lower in winter, but winters show increase after 1995
that are not present in summers. No discernible patterns emerge from mean-variance
analysis of monthly data, suggesting that it is too fine a scale to detect such long-term
changes.

4.2. Persistence metrics

All three persistence metrics assume that NDVI is normally distributed. Given that the
index is bounded, and tends to become “saturated” at high values, there is cause to
question this assumption. Time series of pixels corresponding to locations that remained
unchanged in their CCAP classification (show no signs of LULC change) are extracted
and compared to a fitted normal distribution. In over 85% of the cases, there is

Figure 3. Mean-Variance plot for annual summed NDVI throughout Florida. The X-axis repre-
sents the mean of annual summed NDVI and the Y-axis represents the spatial variance of the
annual summed NDVI. The overall mean and variance for the time period are marked by black
lines. Labels reference the year (e.g., 92 = 1992), and are color coded by decade (color figures
are available in the online version of this article). 1980s in purple circles, 1990s in green squares,
and 2000s in orange triangles.
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insufficient evidence to reject the null hypothesis of no significant difference between
the observed distribution and fitted normal.

4.2.1. Directional persistence

This metric resembles the classic random walk process (Wilson & Kirkby, 1980), in
which the probability of a success (positive step) is defined by the probability of
exceeding the initial or base value. Critical scores can be determined by taking the
inverse of the binomial distribution for a probability equivalent to the desired signifi-
cance level. All subsequent significance levels are α = 0.05 unless otherwise stated.

Figure 5 depicts values of directional persistence using 1982 as the base year. In
general, positive scores prevail although some large negative values are evident from
February to April and August to September. In February, these are concentrated in
central to south Florida, becoming particularly pronounced further north during March
and, to a lesser degree, April. In August, the central panhandle and coastal areas
display pronounced negative scores, shifting to the northeast coast, central, and south
Florida in September. October and November are months in which most of Florida
returns positive scores.

Figure 4. Mean-Variance plots for (a) winter NDVI and (b) Summer NDVI. Color coded by
decade as in Figure 3, and (c) Winter NDVI and (d) Summer NDVI color coded for phase of
ENSO (warm phase in red and cold phase in blue). The X-axis represents the mean of winter/
summer summed NDVI and the Y-axis represents the spatial variance of the winter/summer
summed NDVI. Labels reference the year (e.g., 92 = 1992), and (a) and (b) are color coded by
decade. 1980s in purple circles, 1990s in green squares, and 2000s in orange triangles.
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The northwest and north divisions show persistent positive scores from October to
February, a pattern of negatives from March to April and August to September, and
mixed patterns from May to July. Both central Florida divisions exhibit negative scores
in latewinter/ early spring (February and March) and late summer/early fall (August
and September), and a mixture in December. The Everglades and SW coast shows
noticeable negative scores in February, August, September, and December, while the
southeast records declining scores in March, August, and September and mixed patterns
in February, May–July, and December.

Figure 6 identifies only those pixels returning statistically significant scores. Increas-
ing scores overwhelmingly occur across the state in most months (January, May–July,
October–December). Declines are still apparent in March, August, and September, and
more weakly so in February and April. Northwest and north divisions experience sec-
ondary peaks in precipitation during winter (November–March) of about half the size
of those in summer. According to the recent national climate assessment for the south-
east region of the United States (USGCRP, 2009), average fall precipitation has
increased by 30% since the 1900s, and Florida has experienced a noticeable increase in
winter precipitation. The pronounced pattern of significant positive scores found in
these two divisions from October to February is in keeping with these observations.

When directional persistence is considered for specific land covers, it is not surpris-
ing that significant negative scores are found in areas of developed land in almost all
months, reflecting the increased presence and density of urbanization (Figure 7).
Another prominent regional feature warranting further investigation is the negative

Figure 5. Values of directional persistence metric, D, for (a) January to (l) December 1982–
2006. Directional persistence variable is calculated based on comparisons of NDVI observation
in a month to the observation in the same some in the base year (this study uses 1982 as the base
year). Positive scores (greening) are shown in hues of green and negative scores (declining green-
ness) are in red.
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Figure 6. The statistically significant pixels at 0.05 level for directional persistence metric, D,
from (a) January to (l) December 1982–2006. Positive significant scores are shown in green and
negative significant score in red.

Figure 7. The statistically significant pixels at 0.05 level for directional persistence variable, D,
for developed land only from (a) January to (l) December 1982–2006. Positive significant scores
are shown in green and negative significant scores in red.
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scores in agricultural lands at the southern part of Lake Okeechobee in climate division
5 (Figure 8). Palustrine wetlands (Figure 9) also elicit strong significant declines
through much of the state, indicating a loss of wetland habitat.

4.2.2. Relative directional persistence

The less-pronounced patterns in these scores (Figure 10) might be expected, given the
sensitivity of the metric to the presence/absence of sequences of continuously increas-
ing or decreasing values of NDVI, as opposed to comparison to the first observation.
The northwest dominantly returns positive values from September to February, except
for December. North Florida displays a mixed pattern in almost all months; however,
December, January, March, April, and August all show more negative scores than oth-
ers. Central Florida divisions exhibit positive scores from October to February, again
except for December; other months offer a mixed pattern. Southwest and southeast
divisions present a similarly mixed pattern for all the months; however, their most
southerly portions return large negative patterns in January and February. Similar regio-
nal and temporal patterns are evident in maps (Figure 11) of pixels returning statisti-
cally significant scores.

Figure 12 plots the cumulative frequency of relative persistence scores and those
that would be expected of a stationary standard normal distribution. March and May
indicate statewide behavior conformal with the assumption of a stationary Gaussian
process. The degree of curvature of the function away from the 1:1 diagonal is indica-
tive of difference from the hypothesized condition. Curvature above the diagonal

Figure 8. The statistically significant pixels at 0.05 level for directional persistence variable, D,
for agricultural land only from (a) January to (l) December 1982–2006. Positive significant scores
are shown in green and negative significant scores in red.
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implies a greater frequency of negative scores and curvature below implies greater posi-
tive scores. November elicits the greatest curvature (positive scores) from the null con-
dition. Other months suggesting a preponderance of positive scores include January,
February, July, September, and October. April, June, August, and December all convey
slightly more sequences of declining NDVI values.

4.2.3. Massive persistence

The massive persistence metric (Figure 13) suggests a statewide positive pattern in
greenness in October and November. In the northwest and north, these give way to
negative values from December through to April, peaking in March. August also exhib-
its negative scores for these divisions with coastal areas showing stronger negative val-
ues from May to July and also in September. Central divisions demonstrate an opposite
signal in January; the northern region being slightly negative while the southern has a
strong positive signal particularly in February. During other months, the central divi-
sions display a mixed pattern. May and September seem to have stronger negative sig-
nals. Southwest and southeast divisions return high positive scores in January;
however, the coastal areas and the extreme southern part appear to have negative
scores.

According to the theoretical development, changes within specific land-cover clas-
ses and climate zone can be evaluated, where the C-CAP yields many pixels whose
classification has remained unchanged. These pixels constitute “controls” describing the
“typical” distribution of NDVI in a particular land cover, climate zone, and month.

Figure 9. The statistically significant pixels at 0.05 level for directional persistence variable, D,
for palustrine wetland only from (a) January to (l) December 1982–2006. Positive significant
scores are shown in green and negative significant scores in red.
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Only three land-cover classes of the 10 – developed land, agricultural land, and palus-
trine wetlands – yield sufficiently large numbers of pixels to permit significance testing
of the M scores.

Monthly maps (Figure 14) display the percentage of pixels returning significant val-
ues of the metric (positive and negative) in each land-cover category and climate divi-
sion. For developed land, significant positive changes dominate all climate divisions
from October to February. Negative values become more common from March onward,
especially in the southeast. The preponderance of negative values increases in March
through May. June, September, and December indicate approximately the 5% of pixels
returning significant values as might be expected at random. During July and particu-
larly August, the high percentage of negative values of pixels in the southeast is clear.
October and November are months during which positive values prevail across Florida.

High positive values returned by agricultural land (Figure 15), in January, February,
October, and November, occur statewide. The only unusually frequent occurrences of
pixels with negative scores are restricted to March in the south, spreading to central
areas in April and May. Positive values concentrated in the south during July give way
to negative ones in August and September. Similar temporal and spatial patterns are
observed in the proportions of palustrine wetland pixels (Figure 16). Winter months
generally return a high proportion of pixels with larger values of the metric. As
observed in other land covers, patterns in December are less marked. During spring,
negative values spread from the south (March) northward to central Florida in April

Figure 10. Relative directional persistence metric, R, from (a) January to (l) December
1982–2006. Relative directional persistence, R, is calculated based on comparisons of NDVI
observation to the same month from the preceding year. Positive scores are shown in green and
negative scores in red.
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and May. June is again marked by an absence of significant values, while July elicits
more positive values and August shows a greater prevalence of significant negative
values.

5. Discussion

This study demonstrates a new approach combining mean-variance analysis with a set
of spatial persistence metrics and tests to derive indications of LULCC from a remotely
sensed vegetation index time series. Individually, each metric has its own strengths and
weaknesses, but, taken collectively, common spatio-temporal patterns emerge from the
wealth of data. At the level of climate divisions, any such patterns are most likely
related to climate variability/change – particularly precipitation – over the period of the
satellite record. Anomalous or singular behavior of individual pixels or groups of pixels
within a division is more likely to reflect localized LULCC. Table 2 provides a sum-
mary of the results, combining results for individual months and climate divisions,
using each of the three metrics to summarize possible seasonal and regional changes at
the climate-division level.

Changes in winter season patterns seem to dominate this landscape. Impacts of
ENSO during winter months can be seen in the mean-variance analysis (Figure 4),
where warm phases elicit higher mean NDVI than cold phases. Spatial variances are
also lower in the warm phase, most markedly so in the fall/winter. These results corre-
spond to extensively documented impacts of ENSO on regional precipitation (Beckage,
Platt, Slocum, & Panko, 2003; Cronin, 2002; Enfield, Mestas-Nuñez, & Trimble, 2001;

Figure 11. Pixels returning statistically significant (0.05 level) values of the relative directional
persistence metric, R, from (a) January to (l) December 1982–2006. Positive significant scores
larger than +6 are shown in green and negative significant scores of less than −6 in red.
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Gershunov, 1998; Jagtap et al., 2002; Ropelewski & Halpert, 1986; Schmidt et al.,
2001; Schmidt & Luther, 2002; Vedwan et al., 2008; Wu, Hsieh, & Shabbar, 2005;
Zorn & Waylen, 1997). The switch in ENSO phase from warm (1997–1998) to cold
(1998–1999) and associated alternation in regional winter precipitation may provide
one explanation for the 1999 outlier in the mean variance analysis, as warm phases typ-
ically bring wetter and cooler fall/winter conditions. Figure 4(c) indicates a more stable
pattern of variance and mean during winters in warm phase years than cold in accor-
dance with the presence of a less water-limited environment. The pronounced seasonali-
ty of precipitation and its dependence upon ENSO has tremendous consequences for
water-resources planning and regional operations (Obeysekera, Irizarry, Park, Barnes, &
Dessalegne, 2011), and might be expected to impact NDVI through agricultural yields
(Hansen, Jones, Kiker, & Hodges, 1999), salinity (Cronin, 2002; Schmidt & Luther,
2002), and severe wildfires (Brenner, 1991; Brolley, O’Brien, Schoof, & Zierden, 2007;
Harrison, 2013).

At the seasonal scale, results from the mean-variance and persistence analyses
reveal increasing NDVI and spatial variance, especially in the late fall/winter, most
notably in October and November, and less so in December. Spring (March–May) and

Figure 12. Cumulative frequency plots comparing observed monthly values of the relative
direction persistence metric, R, with simulated normal distribution for each month. Points repre-
sent the discrete classes of scores that R could assume as indicated in the legend to Figure 10.
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August exhibit less marked, but fairly consistent patterns of declining NDVI, while
other summer signals are weak or mixed. Changes are most marked in the northerly cli-
mate divisions, which receive a high proportion of their annual precipitation during
winter. Given the highly vegetated nature of much of Florida, and precipitation as the
main driver of plant growth, this fairly universal change in NDVI might be explained
by a low-frequency shift in climatic patterns, such as the increase in winter precipita-
tion in the southeast United States identified by Karl and Knight (1998).

The Atlantic Multidecadal Oscillation (AMO), a series of naturally occurring low-
frequency (20–40 years) changes in sea surface temperatures of the North Atlantic
Ocean of about 0.5 °C, is a possible driver of this pattern. According to Enfield et al.
(2001), warm phases of the AMO are associated with below normal precipitation in
most of the United States, and extremes in phases cause the inflow to Lake Okeechobee
in south Florida to vary by up to 40%. They conclude that, in general, it is summer
precipitation in the United States that is most greatly impacted, however winter precipi-
tation in Florida exhibits significant positive correlations with the AMO (Enfield et al.,
2001). Precipitation in central and south Florida is more abundant in warm phases of
the AMO and droughts and wildfires are more common in the cool phase. The relation-
ship weakens in north Florida. Secondly, in warm phases of the AMO, the numbers of
tropical storms maturing into major hurricanes are greater. During the warm phase from
1944 to 1970, the number of major hurricanes averaged 2.7 annually; during the
1971–1994 cold phase, it was 1.5 (Goldenberg, Landsea, Mestas-Nuñez, & Gray, 2001)
and, with the return to warm phase in 1995, the number increased to 3.8 (Curtis, 2008;

Figure 13. Monthly values of the massive persistence metric, M, from (a) January to (l) Decem-
ber for all land uses combined, 1982–2006. Positive scores are shown in green and negative
scores are shown in red.
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Enfield et al., 2001; Goldenberg et al., 2001; Miralles-Wilhelm, Trimble, Podestá,
Letson, & Broad, 2005). As a consequence, the warm phase of AMO is associated with
fewer drought events over Florida (Mo, Schemm, & Yoo, 2009). Additionally, Curtis
(2008) reported increased precipitation intensity (August–October) during the warm
phases and Nogueira, Keim, Brown, and Robbins (2013) detected a strong positive
correlation between tropical cyclone precipitation (June–November) and AMO.
Observations and model simulations (Mo et al., 2009; Tootle & Piechota, 2004)

Figure 14. The proportion of significant changes of massive persistence variable, M, for devel-
oped land for each climate division 1982–2006. The hallow black circle size represents 5% of
pixels which falls into each category for each climate division. Significant positive changes are
shown in green color and significant negative changes are shown in red color.

Figure 15. The proportion of significant changes of massive persistence variable, M, for agricul-
tural land for each climate division 1982–2006. The hallow black circle size represents 5% of
pixels which falls into each category for each climate division. Significant positive changes are
shown in green color and significant negative changes are shown in red color.
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Figure 16. The proportion of significant changes of massive persistence variable, M, for palus-
trine wetlands for each climate division 1982–2006. The hallow black circle size represents 5%
of pixels which falls into each category for each climate division. Significant positive changes
are shown in green color and significant negative change is shown in red color.

Table 2. Generalized summary of the three monthly metrics of NDVI persistence (D, R, and M)
across the six climate divisions in the research. Green indicates a tendency for increased green-
ness, brown for decreased greenness, and white indicates an indeterminate or mixed signal within
the climate division based on the particular metric.
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indicate that the combination of a cold ENSO event in a warm AMO phase amplifies
the impact on regional drought. Although uncertainties still exist, both drought and pro-
longed heavy precipitation are key drivers of vegetation growth and NDVI.

6. Conclusions

The combined use of mean variance analysis and the metrics of persistence permits the
objective analysis of monthly remotely sensed time-series data related to the state of
vegetation over an extensive and diverse area. Trends of increasing greenness, particu-
larly in the winter, and in the northern parts of the state are in keeping with previously
reported impacts of ENSO and AMO on precipitation over Florida. However, precipita-
tion variability alone does not offer a complete picture of drivers of vegetation patterns.
Florida’s rapid growth in population and associated societal demands during the 20th

century have extensively transformed the natural landscape through agriculture, urbani-
zation, and the diversion of surface water features, which may be responsible for more
localized conditions and patterns. Identification of such anomalies from the climatic sig-
nal illuminates areas in which investigations of local drivers of LULCC are needed.
The roles of precipitation and land-cover change will be addressed further in future
research but initial results presented here, derived from this time-series based approach,
imply linkages between vegetation dynamics and low-frequency climate drivers in addi-
tion to more anthropogenic controls. By coupling climate variability and anthropogenic
influences, the dynamics of Florida’s vegetation becomes more complex and richer for
scientific research. Spatial variation across the state was significant, both as a function
of climate division and of land cover. While providing a complete overview of vegeta-
tion changes over 26 recent years, this research also analyzes the information at a fine
temporal and spatial scale for such a time-series-based statewide scale, highlighting
statewide impacts of both inter- and intra-annual variability. Understanding of such
complex dynamics is key in developing future climate scenarios and impact studies,
especially in regions of rapid change such as Florida. This research provides a novel
framework and starting point for such future studies.
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