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Abstract: Rice lodging identification relies on manual in situ assessment and often leads to
a compensation dispute in agricultural disaster assessment. Therefore, this study proposes
a comprehensive and efficient classification technique for agricultural lands that entails using
unmanned aerial vehicle (UAV) imagery. In addition to spectral information, digital surface model
(DSM) and texture information of the images was obtained through image-based modeling and
texture analysis. Moreover, single feature probability (SFP) values were computed to evaluate the
contribution of spectral and spatial hybrid image information to classification accuracy. The SFP
results revealed that texture information was beneficial for the classification of rice and water, DSM
information was valuable for lodging and tree classification, and the combination of texture and DSM
information was helpful in distinguishing between artificial surface and bare land. Furthermore,
a decision tree classification model incorporating SFP values yielded optimal results, with an accuracy
of 96.17% and a Kappa value of 0.941, compared with that of a maximum likelihood classification
model (90.76%). The rice lodging ratio in paddies at the study site was successfully identified, with
three paddies being eligible for disaster relief. The study demonstrated that the proposed spatial and
spectral hybrid image classification technology is a promising tool for rice lodging assessment.

Keywords: rice lodging; unmanned aerial vehicle (UAV); image-based modeling; spectral and spatial
hybrid image classification; decision tree classification; single feature probability

1. Introduction

Grains are the foundation of social development, and efficient and accurate classification of
agricultural lands can facilitate the control of crop production for social stability. According to
statistics published by the Food and Agriculture Organization of the United Nations, among various
grains, rice (Oryza sativa L.) accounts for 20% of the world’s dietary energy and is the staple food of
>50% of the world’s population [1]. However, frequent natural disasters such as typhoons, heavy
rains, and droughts hinder rice production and can cause substantial financial losses for smallholder
farmers [2–5], particularly in intensive agricultural practice areas such as Taiwan.

Many countries have implemented compensatory measures for agricultural losses caused by
natural disasters [6,7]. Currently, in situ disaster assessment of agricultural lands is mostly conducted
manually worldwide. According to the Implementation Rules of Agricultural Natural Disaster Relief
in Taiwan, township offices must perform a preliminary disaster assessment within 3 days of a
disaster and complete a comprehensive disaster investigation within 7 days. After reporting to the
county government, township offices must conduct sampling reviews within 2 weeks. A sampled
agricultural paddy with ≥20% lodging is considered a disaster area; to able to receive cash and project
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assistance for rapidly restoring damaged agricultural land, a sampling accuracy of ≥90% is required.
All assessments are conducted through estimation and random sampling because of the vast land
area of the country and labor constraints. Consequently, assessments frequently yield inaccurate and
overdue loss reports because of time and human labor constraints. In addition, local authorities often
deliberately overreport losses in order to obtain generous subsidies from the central government and
gain favor from local communities. Therefore, overreporting affects disaster control and relief policies.
Moreover, in irregular damaged agricultural fields, directly calculating the damaged areas with the
unaided eyes is difficult. Furthermore, the affected farmers are required to preserve evidence of the
damage during assessment; thus, they are not allowed to resume cultivation for at least 2 weeks, which
considerably affects their livelihood. Therefore, to provide a quantitative assessment method and
rapidly alleviate farmers’ burdens, developing a comprehensive and efficient agricultural disaster
assessment approach to accelerate the disaster relief process is imperative.

Remote sensing has been broadly applied to disaster assessment [8–11]. To reduce compensation
disputes on crop lodging interpretation assessment after an agricultural disaster, many remote sensing
applications have been applied to agricultural disaster assessment [12–14]. For example, satellite
images captured through synthetic aperture radar (SAR) have been widely used for agricultural
management, classification, and disaster assessment [15]. However, limited by the fixed capturing
time and spatial resolution, satellite images often cannot provide accurate real-time data for disaster
interpretation [16]. In addition, SAR requires constant retracking during imaging because of the
fixed baseline length, resulting in low spatial and temporal consistency levels and thus reducing the
applicability of SAR images in disaster interpretation [15].

Unmanned aerial vehicles (UAVs), which have been rapidly developed in the past few years,
exhibit advantages of low cost and easy operation [17–20]. UAVs fly at lower heights than satellites
and can instantly capture bird’s-eye view images with a high subdecimeter spatial resolution by flying
designated routes according to demands. Owing to the advanced techniques of computer vision
and digital photogrammetry, UAV images can be used to produce comprehensive georectified image
mosaics, three-dimensional (3D) point cloud data [21], and digital surface models (DSMs) through
many techniques and image-based modeling (IBM) algorithms such as Structure-from-Motion (SfM),
multiview stereo (MVS), scale-invariant feature transform (SIFT), and speeded-up robust features
(SURF) [22–24]. Therefore, UAVs have been widely applied in production forecasting for agricultural
lands [25–29], carbon stock estimation in forests [30], agricultural land classification, and agricultural
disaster assessment [31–35]. In addition, height data derived from UAV image-generated DSMs
have received considerable attention because studies have revealed that height data possess a critical
contribution to classification and have the potential to improve classification accuracy compared with
the use of UAV images only [36,37].

This study proposes a comprehensive and efficient rice lodging interpretation method entailing
the application of a spatial and spectral hybrid image classification technique to UAV imagery.
The study site was an approximately 306-ha crop field that had recently experienced agricultural
losses in southern Taiwan. Specifically, spatial information including height data derived from a UAV
image-generated DSM and textural features of the site was gathered. In addition to the original spectral
information regarding the site, single feature probability (SFP), representing the spectral characteristics
of each pixel of the UAV images, was computed to signify the probability metric based on the pixel
value and training samples. Through the incorporation of the spatial and spectral information,
the classification accuracy was assessed using maximum likelihood classification (MLC) [38,39] and
decision tree classification (DTC) [40]. Finally, the proposed hybrid image classification technique was
applied to the damaged paddies within the study site to interpret the rice lodging ratio.

2. Materials and Methods

Figure 1 depicts the flowchart of the study protocol, starting with UAV imaging.
DSM specifications were formulated by applying IBM 3D reconstruction algorithms to UAV images.
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Moreover, texture analysis was conducted followed by image combination to produce spatial and
spectral hybrid images. After training samples were selected from the site, the SFP value was computed,
which was later used as the threshold value in the DTC process. Finally, image classification accuracy
was evaluated using MLC and DTC, and the rice lodging ratio at the study site was interpreted.
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2.1. Study Site

The study site is located in the Chianan Plain and Taibao City, Chiayi County, with a rice
production area of approximately 12,000 ha, which is the second largest county in Taiwan (Figure 2).
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Figure 2. Location of UAV imaging area, study site (blue polygon), and ground control points (red dot).

Farmers in Taibao City harvest rice twice a year during June–July and September–November;
however, they frequently experience rice lodging caused by heavy rains and strong storms associated
with weather fronts and typhoons.

On 3 June 2014, a record-breaking rainfall of 235.5 mm/h in Chiayi County associated with a
frontal event caused considerable agricultural losses of approximately US$ 80,000. The Chiayi County
Government executed an urgent UAV mission to assess the area of rice lodging on 7 June 2014. In total,
424 images were acquired across 306 ha by using an Avian-S fixed-wing UAV with a spatial resolution
of 5.5 cm/pixel at a flight height of 233 m, with approximately 3 ha of the rice field used as the study
site. The UAV was equipped with a lightweight Samsung NX200 (Samsung Electronics Co., Ltd.,
Yongin, South Korea) digital camera with a 20.3-megapixel APS-C CMOS sensor, an image size of
23.5 mm × 15.7 mm, and a focal length of 16 mm. The camera recorded data in the visible spectrum by
using an RGB color filter. The weather condition was sunny with 10-km/h winds at ground level.

To improve the image accuracy of UAVs in this study, nine ground control points (GCPs) were
deployed with highly distinguishable features such as the edges of paddies or road lines. A GeoXH
GPS handheld with real-time H-Star technology for subfoot (30 cm) nominal accuracy was placed on
the ground to acquire the coordinates of nine GCPs (Figure 3). The rice lodging images and ground
truth information were obtained through field surveys. A Trimble M3 Total Station was employed to
measure the height difference between the lodged and healthy rice (Figure 4). The study site covers
approximately 3 ha and features six land cover types: rice, lodging, tree, water body, artificial surface,
and bare land. According to the field survey, the cultivar in the study site is TaiKeng 2 (O. sativa L.
c.v. Taiken 2, TK 2). With excellent consumption quality, TK 2 is one of the most popular japonica
rice varieties in Taiwan with a plant height of 111.2–111.3 cm [41]. A quick observation revealed the
lodged rice to be at least 20 cm lower than the healthy rice (Figure 4b), resulting in the plant height
being lower than 90 cm (Figure 5).
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2.2. Image-Based Modeling

IBM is a new trend of photometric modeling for generating realistic and accurate virtual 3D
models of the environment. Through the use of the invariant feature points of images detected through
SIFT, the SfM technique was adopted to simulate the moving tracks of cameras and to identify the target
objects in a 3D environment, and the feature points were matched in 3D coordinates. Subsequently,
the SfM-generated weakly supported surfaces with a low point cloud density were reinforced using
multiview reconstruction software, CMPMVS, to complete 3D model reconstructions. In brief, IBM can
be divided into three major steps, namely SIFT, SfM, and CMPMVS; detailed procedures were provided
by Yang et al. [42].

SIFT entails matching the feature points to the local features on images that are invariant to image
rotation and scaling and partially invariant to changes in illumination and 3D camera viewpoint [43].
SIFT produces highly distinctive features for object and scene recognition by searching for stable
features across all possible scales by using a continuous scale function known as scale space [43–46].

Then, SfM determines the spatial structure according to the motion of the camera and 3D
coordinates of the objects by matching identical feature points obtained using SIFT on different
images [47,48]. The exchangeable image format used by digital cameras is used to obtain the basic
image attributes for estimating motion tracking. Subsequently, the camera position is estimated using
the kernel geometry of the feature points. The relationship between the corresponding feature points
of the two images is then identified in the trajectory of the feature points. Through the optimization
of the estimated point positions on multiple overlapping images by applying bundle adjustment,
the coordinates are calculated to determine the intersections and resections of the elements and point
positions inside and outside the camera. According to the coordinates of the corresponding positions,
a point cloud comprising 3D coordinates and RGB color data is formed.

Finally, CMPMVS, a multiview reconstruction program based on clustering views for multiview
stereo and patch-based multiview stereo algorithms, is used to reinforce the SfM-generated weakly
supported surfaces of low-textured, transparent, or reflective objects with low point cloud density
(e.g., green houses and ponds in agricultural fields). CMPMVS can be used to generate a textured
mesh and reconstruct the surface of the final 3D model by using a multiview stereo application [49,50].

2.3. Texture Analysis

Texture analysis is considered an important method of measuring the spatial heterogeneity
of remotely sensed images, including pattern variability, shape, and size [51]. By measuring the
frequency of gray-tone changes or color-space correlation, texture analysis can describe image details
and determine the relationship between pixels [52,53].

Texture analysis is typically categorized into four categories, namely structural, statistical,
model-based, and transform approaches [54], of which the statistical approach indirectly represents the
texture by using the nondeterministic properties that govern the distributions and relationships
between the gray tones of an image; this approach has been demonstrated to outperform the
transform-based and structural methods. Regarding the measurement level, the statistical approach can
be categorized into first-order statistics, such as mean and variance, and second-order statistics, such as
angular second moment (ASM), entropy, contrast, correlation, dissimilarity, and homogeneity [55–58].
For second-order statistics, the spatial distribution of spectral values is considered and measured
using a gray-level co-occurrence matrix, which presents the texture information of an image in
adjacency relationships between specific gray tones. According to a study on human texture
discrimination, the textures in gray-level images are spontaneously discriminated only if they differ
in second-order moments. Therefore, six second-order statistics, namely ASM, entropy, contrast,
correlation, dissimilarity, and homogeneity, were employed in this study to measure the texture
characteristics. In addition, two first-order statistics, namely mean and variance, were evaluated
for comparison.
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2.4. Single Feature Probability

SFP, a pixel-based Bayesian-classifier, is used to compute a probability metric (with a value ranging
between 0 and 1) for each pixel of the input image based on the pixel value and training samples.
The Bayesian network is appropriate because of its ability to handle both continuous and discrete
variables, learn from training samples, and return a query metric for candidate pixels demonstrating
a goodness of fit to the training samples. Within the selected training areas, representative pixels of
land use types are used for computing pixel cue metrics to train the pixel classifier. Candidate pixels
from images are then evaluated by the pixel classifier to quantify the degree to which they resemble
the training pixels. The pixel cue metrics can include human visual attributes, such as color/tone,
texture, and site/situation, and also visually undetectable information, such as spectral transforms
or vegetation indices. Higher/lower probability values are assigned to those pixels whose values
are similar/different from the training samples [59–61]. Subsequently, the feature probability layer
(ranging between 0 and 1) is outputted, with each pixel value representing the probability of being the
object of interest [62].

2.5. Image Classification

Various classification algorithms have been applied to remotely sensed data for terrain pattern
recognition [8,63]. Two supervised classification algorithms, namely MLC and DTC, were employed
in the current study, and the classification accuracy levels were assessed.

2.5.1. Maximum Likelihood Classification

The maximum likelihood decision rule is centered on probability [64]. In MLC, the mean
vector and covariance matrix in each training set class are calculated, under the assumption that all
characteristic values are normally distributed. Subsequently, the probability of belonging is calculated
for the unknown pixels, and the pixels are categorized into the training set class with the highest
probability [65–67]. Because MLC is a supervised classifier, the classification highly depends on the
centroid and variation of training sets. Therefore, the selection of training data is crucial in MLC; in this
study, two selection criteria were followed: representativeness and efficiency.

2.5.2. Decision Tree Classification

DTC, comprising internal and external nodes connected by branches, is a hierarchical model
composed of decision rules that recursively split independent variables into homogeneous zones [68].
Each internal node is associated with a decision rule, whereas each external node indicates the
classification results. The tree-structured DTC, a widely used classification technique in machine
learning, has been extensively applied to various data analysis systems such as electronic sensors [69]
and land cover classification [70]. This study used the classification and regression trees for constructing
binary trees with appropriate SFP information employed as the decision rule for each internal node.

3. Results

3.1. Image-Based Modeling

Figure 6 depicts a UAV mosaic image of the study site and the UAV flight lines. A 3D point
cloud with a total of 1,048,575 points was constructed through SIFT, SfM, and CMPMVS. Subsequently,
a DSM covering a total area of 306 ha in total was produced using the software PhotoScan (Pro v.1.0.1,
Agisoft LLC, St. Petersburg, Russia) (Figure 7). The produced DSM had a ground sampling distance
of 11 cm and point density of 81 points/m2. The DSM was resampled to a pixel size of 5.5 cm and
exported into a total of 14,410,160 pixels to match the pixel size of the UAV RGB images. The elevation
of the study site was determined to range from 18.7 to 33.9 m in the DSM. Comparing the GCP
coordinates facilitated the estimation of the absolute error of the 3D model based on the average errors
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recorded in Table 1. The north–south (N–S) error was 24 cm, east–west error was 30 cm, and height
error was 34 cm; hence, the N–S direction exhibited a higher accuracy level due to a high overlap of
adjacent photographs in the N–S-bound flight lines.
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3.2. Texture Analysis

The mosaicked UAV image of the study site was used to analyze eight texture measures, namely
mean, variance, ASM, entropy, contrast, correlation, dissimilarity, and homogeneity. Among these
measures, ASM, entropy, and contrast exhibited superior performance (Figure 8), which is in agreement
with the conclusion of Haralick et al. [55], and were further used to calculate the SFP values for each of
the six land cover types. The ASM measure was associated with higher SFP values than the entropy
and contrast measures for four out of the six land cover types, thus indicating the applicability of the
ASM measure for texture analysis (Table 2). Therefore, this study employed ASM texture analysis
(Figure 8c) for discerning the land cover types of the study site.
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Table 1. Averaged error of control points.

Control Point E (m) N (m) Z (m)

1 0.51 0.22 0.42
2 0.20 0.11 0.45
3 0.30 0.11 0.83
4 0.21 0.22 0.28
5 0.00 0.22 0.65
6 0.10 0.22 0.03
7 0.20 0.33 0.10
8 0.72 0.55 0.05
9 0.41 0.22 0.28

Average error 0.29 0.24 0.34

Table 2. SFP results of ASM, Entropy, and Contrast texture analyses for RGB + Texture and RGB +
Texture + DSM image composites.

RGB + Texture RGB + Texture + DSM

ASM Entropy Contrast ASM Entropy Contrast

rice 0.930 0.903 0.924 0.900 0.900 0.910
lodging 0.628 0.628 0.636 0.687 0.687 0.673

tree 0.292 0.292 0.612 0.371 0.371 0.631
water 0.903 0.821 0.827 0.873 0.818 0.813

artificial surface 0.822 0.810 0.816 0.833 0.824 0.823
bare land 0.862 0.855 0.862 0.901 0.883 0.894

3.3. Single Feature Probability

Four image composites, namely RGB, RGB + Texture, RGB + DSM, and RGB + Texture + DSM,
were used for further analysis. Table 3 presents the SFP results derived for the four image composites
for the six land cover types; a high value signifies high classification accuracy.
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Table 3. SFP results for four image composites of land covers.

Class RGB RGB + Texture RGB + DSM RGB + Texture + DSM

rice 0.462 0.930 0.899 0.900
lodging 0.619 0.628 0.698 0.687

tree 0.391 0.292 0.672 0.371
water 0.821 0.903 0.802 0.873

artificial surface 0.063 0.822 0.811 0.833
bare land 0.432 0.862 0.879 0.901

In general, when the texture and DSM measures were included, the SFP values derived for the six
land cover types were greater than that derived using the RGB image alone. The SFP value obtained
for rice increased when either the DSM or texture information was added. Moreover, the SFP values
derived for lodging and tree were the highest in the RGB + DSM composite, but they were reduced in
the RGB + Texture + DSM composite (by 0.11 and 0.30, respectively). This is attributable to the similar
textures of both the lodging and tree classes; therefore, adding texture information to the RGB image
did not improve the interpretation accuracy.

The SFP value for water body was the highest (0.903) in the RGB + Texture composite but the
lowest (0.802) in the RGB + DSM composite. Water reflection could interfere with the DSM generated
using IBM, which provides a possible explanation of the negative influence of the DSM on water
body identification. In the future, additional near-infrared band information may have the potential
to overcome this water body misidentification. When texture and DSM information was included,
a noticeable increase was observed in the SFP values for artificial surface and bare land, with the
highest SFP values occurring in the RGB + Texture + DSM composite (0.833 and 0.901, respectively).
The SFP results evidenced the contribution of texture and DSM information to classification accuracy.
Therefore, the SFP results were employed in subsequent analyses as the decision rule for each internal
node in the DTC process.

3.4. Image Classification

The classification accuracy was evaluated through an error matrix with four commonly used
accuracy measures, namely producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA),
and Kappa statistic (Kappa). PA is defined as the number of correctly classified pixels in each category
divided by the total number of pixels in the corresponding ground truth category. Specifically, PA
indicates the probability of a reference pixel being correctly classified, and it is thus a measure of
omission error. UA is computed by dividing the number of correctly classified pixels in each category
by the total number of pixels classified in that category. Specifically, UA indicates the probability that a
pixel classified into a given category actually represents that category on the ground, and it is thus a
measure of commission error [64]. OA is determined by dividing the total correct pixels by the total
number of pixels in the error matrix, whereas Kappa is a measure of agreement or accuracy between
the remote sensing-derived classification map and the ground truth data.

A performance comparison between MLC and DTC revealed that the highest OA was achieved
when DTC was used with the SFP result as the decision threshold value (OA, 96.17%; Kappa, 0.941).
The MLC result derived for the four image composites is illustrated in Figure 9. The RGB image
had a classification accuracy of 86.24% (Table 4). The addition of the DSM and texture information
increased the accuracy to 93.84% and 88.14%, respectively. Simultaneously adding the DSM and texture
information to the RGB image increased the accuracy to 90.76%, indicating a significant improvement
of the classification accuracy.
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(a) RGB (b) RGB + Texture

(c) RGB + DSM (d) RGB + Texture + DSM

 Figure 9. Maximum likelihood classification results for four image composites: (a) RGB; (b) RGB +
Texture; (c) RGB + DSM, and (d)RGB + Texture + DSM.

Table 4. Accuracy assessment of MLC and DTC.

Classification Band Overall Accuracy Kappa

MLC

RGB 86.24% 0.799
RGB + DSM 93.84% 0.906

RGB + Texture 88.14% 0.825
RGB + DSM + Texture 90.76% 0.861

DTC RGB + DSM + Texture 96.17% 0.941

The internal nodes with the associated decision rules in DTC identified the land cover types in
the external nodes in the following order objectively: water body, bare land, artificial surface, tree,
rice, and lodging (Figure 10). Because identifying lodged rice was the primary target of this study,
lodging was the last external node in DTC. In addition, the optimal SFP image composite for each
class was determined using SFP analysis and was used as the decision rule for each internal node.
The optimal SFP image composite for each class is outlined as follows: RGB + Texture for water body,
RGB + Texture + DSM for bare land and artificial surface, RGB + DSM for tree, and RGB + Texture for
rice and lodging.

The DTC classification results (Figure 11) revealed a PA of more than 95% for five land cover
types, namely rice, lodging, tree, water body, and bare land (Table 5). Artificial surface had the lowest
PA of 75.1%, which can be explained by the similar heights of the artificial surface, lodging, and water
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(Figures 5 and 7). For comparison, an additional approach was implemented by using the average
spectral values obtained from the ground truth for each land cover type as the decision rules of internal
nodes in DTC (details not shown). However, the OA of this approach was 77.51% (Kappa, 0.637),
which is considerably lower than the classification accuracy levels of MLC and DTC that used SFP
values as the decision threshold values.
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Table 5. Error matrix of DTC using SFP as decision rules.

Ground Truth

Rice Lodging Tree Water Artificial
Surface

Bare
Land Total User’s

Accuracy (%)

DTC

rice 44,314 269 0 0 0 0 44,583 99.4
lodging 625 12,489 86 198 1723 4 15,125 82.6

tree 0 0 5181 0 0 0 5181 100
water 0 0 0 7528 76 0 7604 99.0

artificial
surface 0 0 0 120 5425 0 5545 97.8

bare land 0 0 0 0 0 2984 2984 100.0
total 44,939 12,758 5267 7846 7224 2988 81,022

Producer’s
accuracy(%) 98.6 97.9 98.4 95.9 75.1 99.9

Overall Accuracy: 96.17%, Kappa: 0.941.

3.5. Rice Lodging Interpretation

Figure 12 illustrates seven rice paddies that were reported for agricultural disaster relief
compensation in the study site. The lodging ratio of each paddy was analyzed using DTC (Table 6).
Paddies E, F, and G had a > 20% lodging rate (67.09%, 75.23%, and 50.50%, respectively) and were thus
eligible for agricultural disaster relief compensation. Accordingly, the quantitative results obtained
from the proposed classification technique can effectively interpret the percentage of lodging and
provide essential compensation reference information for the government.
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Table 6. Lodging proportion of the reported rice paddies.

Pixel Number

Rice Paddy
A B C D E F G

Lodging 3255 6136 23,913 121,628 549,495 162,627 150,942
Paddy 1,412,833 1,433,273 1,380,834 1,374,845 819,077 216,185 298,923

Lodging proportion (%) 0.23 0.43 1.73 8.85 67.09 75.23 50.5

4. Discussion

In practice, the identification of healthy and lodged rice within paddy fields is the most critical task
for disaster relief compensation schemes, which are based on the precise evaluation of the proportion of
lodged rice. Because strict decision criteria were adopted in DTC and lodged rice was the last external
node and target object in the decision tree, lodged rice had a comparatively high commission error
in this study. To minimize the commission error in rice/lodging identification, two additional image
processing steps, extracting and thresholding, were employed to enhance the proposed approach
under realistic conditions.

First, paddy fields were extracted from the whole image by using a cadastral boundary map.
The boundaries of the paddy fields were distinguished, and the area outside the paddy fields was
excluded by a mask layer and exempted from further classification and analysis. Second, considering
that the healthy TK2 rice crop typically has a height of 1.1 m and considering the domino effect of
lodging [4], the lodging area should be larger than 1 m2. Therefore, a threshold of 1 m2 was adopted
to exclude scattering noise, a common effect of pixel-based classification on fine spatial resolution
imagery, from the lodging area. Under these two practical constraints, the rice paddy fields were
extracted, and the scattering noise of lodged rice was reduced (Figure 13).
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In the future, establishing photo-identifiable GCPs and checkpoints (CPs) at locations with
invariant properties is essential to providing calibration information for geometrically rectifying UAV
images. Invariant locations such as an edge of a concrete facility, a manhole cover along public roads,
or central separation islands of public roads can be adequate candidates for GCPs and CPs. With a
priori establishment of GCPs and CPs at invariant locations, the geometric correction of UAV images
can be improved so to further enhance image applications. Moreover, establishing an agricultural
UAV monitoring system to provide regular inventories and environmental surveying on crops can be
beneficial to farmers and government agencies for agricultural disaster relief compensation.

5. Conclusions

This study developed a comprehensive and efficient agricultural land classification technique
incorporating UAV-image-derived DSM and texture information; the proposed technique can be used
to improve the current manual rice lodging assessment techniques. The main outcomes are detailed
as follows:

1. The results reveal that UAVs are viable platforms for agricultural land classification because
of their ability to be deployed quickly and to rapidly generate comprehensive high-resolution
images. The resulting high-resolution UAV images can serve as scientific evidence of the impacts
of agricultural disasters. With appropriate image classification techniques, UAV images have
great potential to improve the current manual rice lodging assessment techniques.

2. Based on the SFP results, the contribution of DSM and texture information to the classification
accuracy can be estimated for each land cover type. Texture information could significantly
improve the classification accuracy of rice and water. The DSM was more suitable for lodging and
tree classification. The simultaneous addition of DSM and texture information exerted positive
effects on the classification accuracy of artificial surface and bare land.

3. For accuracy assessment, DTC using SFP values as the decision threshold values outperformed
MLC, with a classification OA of 96.17% and Kappa value of 0.94.

4. The inclusion of DSM information alone, texture information alone, and both DSM and texture
information had varied positive effects on the classification accuracy of MLC (from 86.24% to
93.84%, 88.14%, and 90.76%, respectively).

5. This study incorporated seven rice paddies in the study site that were reported for agricultural
disaster relief compensation. Through the proposed classification technique, paddies E, F, and G
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had a >20% lodging rate (67.09%, 75.23%, and 50.50%, respectively); therefore, these paddies were
eligible for disaster relief compensation. The proposed classification technique can effectively
interpret lodging and provide the government with quantitative and objective data to be used
as a reference for compensation. In addition, these data may serve as a valuable reference for
various applications such as agricultural mapping/monitoring, agricultural insurance, yield
estimation, and biomass estimation.

6. To fulfill realistic conditions and accelerate the disaster relief compensation process, two
additional image processing steps, extracting paddy field boundaries and thresholding a
minimum lodging area of 1 m2, were executed to identify lodged rice within cadastral units.
These steps minimized the commission error associated with rice/lodging identification and
reduced scattering noise in paddy fields.

7. In addition to rice lodging interpretation, future research can further examine the disaster-related
loss of rice according to its growth stages (e.g., yellow leaves caused by cold damage and loss
or mildew of rice straws caused by heavy rain or the Asian monsoon rainy season). Moreover,
disaster assessment of other crops can be incorporated into future research.
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