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In general, the sewer inspection usually employs a great number of CCTV images to
discover sewer failures by human interpretation. A computer-aided program remains
to be developed due to human’s fatigue and subjectivity. To enhance the efficiency of
sewer inspection, this paper attends to apply artificial intelligence to extract the failure
features of the sewer systems that is demonstrated on the sewer system in the eastern
Taichung City, Taiwan. Wavelet transform and gray-level co-occurrence matrix, which
have been widely applied in many texture analyses, are adopted in this research to
generate extracted features, which are the most valuable information in pattern recogni-
tion of failures on CCTV images. Wavelet transform is capable of dividing an image into
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four sub-images including approximation sub-image, horizontal detail sub-image, vertical
detail sub-image, and diagonal detail sub-image. The co-occurrence matrices of horizon-

tal orientation, vertical orientation, and 45◦ and 135◦ orientations, respectively, were
calculated for the horizontal, vertical, and diagonal detail sub-images. Subsequently, the
features including angular second moment, entropy, contrast, homogeneity, dissimilarity,
correlation, and cluster tendency, can be obtained from the co-occurrence matrices. How-
ever, redundant features either decrease the accuracy of texture description or increase
the difficulty of pattern recognition. Thus, the correlations of the features are estimated
to search the appropriate feature sets according to the correlation coefficients between
the features. In addition, a discriminant analysis was used to evaluate the discriminabil-
ity of the features for the pipe failure defection, and entropy, correlation, and cluster
tendency were found to be the best features based on the discriminant accuracy through
an error matrix analysis.

Keywords: Feature extraction; wavelet transform (WT); gray-level co-occurrence matrix;
CCTV images.

AMS Subject Classification: 22E46, 53C35, 57S20

1. Introduction

In Taiwan, the percentage of population served by the infrastructures of sewer is
below 22.10% that has driven a great attention from the government and envi-
ronmental societies. To rise up the sewer-serving percentage, the Construction and
Planning Agency of Taiwan has been making great efforts to establish the sewer
construction all over the island. After a new sewer construction, sewer inspection
is executed prior to house-connection.1

Sewer inspection involves routines inspection, detailed inspection, and special
inspection.2 Routines inspection is to inspect sewer pipes roughly, so its inspection
accuracy is usually less than detailed inspection. Special inspection is to implement
an inspection for some specific events. Nowadays, engineers apply various tools
and technologies such as closed circuit television (CCTV) cameras mounted on
robots, ground piercing radar (GPR), sonar and infrared thermograph, to sewage
inspection.3–7 With a commercial availability, CCTV is considered as the most
popular image source for sewer inspection. CCTV camera is usually mounted on
robot moving inside sewer pipes from a manhole and remotely-controlled outside to
acquire the images of inner pipe.5 Mobile CCTV system has many advantages, such
as fewer inspectors needed, more safety-ensured to inspectors, and more detailed
data of distance and slope possibly recorded.2 The Water Research Centre (WRC)
in UK categorizes major sewer pipe defects appearing on CCTV images into 10
classes, including open joint, displaced joint, crack, fracture, broken pipe, hole,
collapse, spalling, wear, and deformation.8

In general, the sewer inspection usually employs a great number of CCTV images
to discover sewer failures by human interpretation. However, human interpretation
is not suitable for detecting a great number of CCTV images due to human’s fatigue,
subjectivity, and cost.9 To overcome these limitations, the artificial intelligence
has been variously employed in diagnosis of sewer pipe defects. Moreover, some
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computer-aided systems have been developed to replace human interpretation for
detecting pipe defects on a great number of CCTV images.6,9,10

In common, color and texture are the two typical features used to describe an
object. For interpretation of sewer pipe defects, texture is more critical compared
to color. Some efficient approaches had been applied in extraction of textural fea-
tures.11 Recently, a wavelet-based perceptual image model coupled with Human
Visual System to produce high quality images was developed for the compres-
sion of color images,12 and a wavelet-based model coupled with novel biologically-
inspired model was established for extracting features of faces from face images.13

Wavelet descriptors are concluded insensitive to individual shape variations and bet-
ter than Fourier descriptors in shape representation for handprinted characters.14

A combination of wavelet transform (WT) and co-occurrence matrices was used
to extract the co-occurrence features of defective textile fabrics and demonstrated
being powerful in detecting defects.15 This research adopted wavelet transform and
co-occurrence matrices to extract the feature of pipe defects on CCTV inspection
images.

2. Experimental Equipments

The sewer system in the 9th district of Taichung city, the largest city in the central
Taiwan, consists of ten subsystems, subsystem A through J. Figure 1 is the layout
of the sewer system. In 2002, the CCTV inspection work provides engineers with
1,101 frames of CCTV images for diagnosing the sewer pipe defects. To acquire the
enormous amount of CCTV inspection images, the hardware and software for sewer
pipe failure detection are briefly introduced as follows:

Fig. 1. Layout of the sewer system in the 9th district of Taichung city.
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2.1. Mobile closed circuit television (CCTV ) system

A mobile CCTV system for defect inspection of inner pipe consists of a camera with
self-lighting and propelled monitoring equipment, connected by multicore cable used
for power supply and inspection modules. The cable, with a maximum length of
250m, wound around a drum equipped with a mechanism also can be used to
position the pipe defects with other accessories of a video-recorder, a computer
system for recording, and a video-printer or ordinary printer, which are usually
mounted in a vehicle above the ground.

Mobile CCTV can be applied to sewer inspection within a pipe with a cross-
section ranging from 100mm to 1,500mm. The operation of mobile CCTV is first
to put the camera mounted on a robot, which moves between the manholes and is
controlled by the equipments in the vehicle on the ground. While the robot moves
forward, the inner pipe is monitored and recorded by the camera and the video-
recorder, respectively. If a pipe defect is detected, the camera can stop in time
to make precise examination and to document details. However, sometimes pipe
defects are not easily detected due to the original conditions of camera itself includ-
ing its available angle of lenses, focal length (zoom), light, and resolution. Thus,
the cameras used for inspection of inner pipe are suggested to be equipped with
wide-angle lenses, adjustable diaphragm, variable focal length, and high resolution
sensor. Furthermore, the brightness and sharpness of CCTV images, either color or
black-and-white, should be enabled to be adjusted automatically or manually from
the control vehicle.2

2.2. Software and hardware for image processing

In this research, Matlab 6.5 was used to program the algorithm codes of extracting
pipe defect features due to its friendly environment and good performance in both
image processing and matrix computation. A personal computer equipped with
AMD1600+ CPU, 256MB RAM, and 40GB disk, was used to store the CCTV
inspection images and to implement image processing.

3. Methodology

3.1. Wavelet transform

Wavelet transform (WT) is a linear transform developed from Fourier transform.
However, unlike Fourier transform whose basis functions are sinusoids, wavelet
transform is based on small waves, so-called wavelet, of varying frequency and lim-
ited duration so as to obtain better resolutions along frequency scale.16–18 Although
WT has been known for many years, it was not applied to image processing until
Daubechies, who provided the discretization of WT, and Mallat, who established
the connection between WT and the multiresolution theory. Moreover, signals in
multiresolution represented by WT is believed to enable extraction of more powerful
features than the signal scale case.15,19–21
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The sets of scaling and wavelet functions are defined as:

scaling function

ϕa,b(x) = 2
a
2ϕ(2ax− b), (3.1)

wavelet function

ψa,b(x) = 2
a
2ψ(2ax− b), (3.2)

for all a, b ∈ Z. Z is the set of integers. The scale parameter a controls stretch or
compression of the mother wavelet function; the translation parameter b is an offset
along the time axis; 20.5a controls its height or amplitude.17,22 For multiresolution
analysis, it is required that subspaces Sa containing high resolution functions must
contain all lower resolution functions.15 The expansion functions of subspace Sa are
expressed as a weighted sum of those of subspace Sa+1. Thus,

ϕa,b(x) =
∑
n

hϕ(n)ϕa+1,n(x), (3.3)

where hϕ(n) are called scaling function coefficients. Substituting Eq. (3.1) for
ϕa+1,n(x), Eq. (3.3) becomes

ϕa,b(x) =
∑
n

hϕ(n)2
a+1
2 ϕ(2a+1x− n). (3.4)

If both a and b are set to 0, Eq. (3.4) becomes

ϕ0,0(x) = ϕ(x) =
∑
n

hϕ(n)2
1
2ϕ(2x− n). (3.5)

If x is scaled by 2a, translated by b, and n is let as m− 2b, it is given as:

ϕ(2ax− b) =
∑
n

hϕ(n)2
1
2ϕ(2(2ax− b) − n)

=
∑
m

hϕ(m− 2b)2
1
2ϕ(2a+1x−m). (3.6)

An analogous result for wavelet functions is shown as:

ψ(2ax− b) =
∑
m

hψ(m− 2b)2
1
2ϕ(2a+1x−m). (3.7)

Obviously a CCTV image can be regarded as the change of discrete signal along
a two-dimensional (2D) scale. Hence, a 2D discrete WT (DWT) had been proved
to be useful for signal or image processing and pattern recognition.23,24 The fast
wavelet transform was considered as a computationally efficient implementation of
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the DWT was defined as:17

Wϕ(a0, b) =
1√
M

∑
x

f(x)ϕa0,b(x), (3.8)

Wψ(a, b) =
1√
M

∑
x

f(x)ψa,b(x), (3.9)

for a ≥ a0 and

f(x) =
1√
M

∑
b

Wϕ(a0, b)ϕa0,b(x) +
1√
M

∞∑
a=a0

∑
b

Wψ(a, b)ψa,b(x), (3.10)

where f(x), ϕa0, b(x), and ψa, b(x) are the functions of the discrete variables x =
0, 1, 2, . . . ,M − 1. Considering ψa, b(x) in Eq. (3.9) substituted by Eq. (3.2), we get

Wψ(a, b) =
1√
M

∑
x

f(x)2
a
2ψ(2ax− b). (3.11)

Replacing ψ(2ax− b) with the right-hand side of Eq. (3.7), Eq. (3.11) becomes

Wψ(a, b) =
1√
M

∑
x

f(x)2
a
2

∑
m

hψ(m− 2b)2
1
2ϕ(2a+1x−m). (3.12)

It also can be rewritten as

Wψ(a, b) =
∑
m

hψ(m− 2b)
1√
M

∑
x

f(x)2
a+1
2 ϕ(2a+1x−m), (3.13)

or

Wψ(a, b) =
∑
m

hψ(m− 2b)Wϕ(a+ 1,m). (3.14)

Also, a similar derivation involving the DWT approximation coefficients is obtained
as:

Wϕ(a, b) =
∑
m

hϕ(m− 2b)Wϕ(a+ 1,m). (3.15)

Wϕ(a, b) and Wψ(a, b) are computed by convolving Wϕ(a + 1, b) with the time-
reversed scaling and wavelet vectors, hϕ(n) and hψ(n). In other words, the original
function, Wϕ(a + 1, b), is split into a low-pass (approximation component) corre-
sponds to Wϕ(a, b), and a high-pass (detail component) corresponding to Wψ(a, b).

In multiresolution analysis (MRA), a scaling function is to create a series of
approximation of a function or an image; additional functions, i.e. wavelet func-
tions, are then used to encode the information difference between adjacent approx-
imations.17,25 CCTV images can be regarded as the change of discrete signal along
a two-dimensional (2D) scale. Hence, a 2D discrete WT (DWT) was proved to
be useful for signal or image processing and pattern recognition.23–27 Through a
decomposition of 2D discrete WT, which is implemented by consecutive low-pass (L)
and high-pass (H) filtering through one-dimensional convolution, a CCTV inspec-
tion image X(m,n) can be divided into an approximation image (LL) and three
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(a) 1-Level 2-DWT (b) 2-Level 2-DWT

Fig. 2. Illustration of image compression.

detail images in horizontal (HL), vertical (LH), and diagonal (HH) orientations
(see Fig. 2(a)). At each recurring step of decomposition, the approximation image
is split into a next level of approximation and detail images (see Fig. 2(b)). Until
no more valuable information is obtained, the recurring step of decomposition for
a CCTV image is terminated.

3.2. Co-occurrence features

A co-occurrence matrix is a square matrix in which each element Mij in row (i)
and column (j) directions records a relative occurrence frequency of a pair of pixels
with the same gray level value separated by a certain pixel distance in one direc-
tion.2,19 An example of a co-occurrence matrix computed by one pixel distance in
row direction is shown in Fig. 3. The size of co-occurrence matrix depends on the
range of the gray level values of the CCTV image. The element M11 is recorded
as 1 due to only one pair of gray level value “0” in the image separated by one
pixel distance in row direction. Collecting the value for the co-occurrence matrix is

Fig. 3. Example of co-occurrence matrix computation.
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extremely simple but time-consuming, if the image has 256 distinct levels of gray.26

The means, µx and µy, and standard deviations, σx and σy, which have been widely
used as descriptors for the image data, can be used for the co-occurrence matri-
ces. Generally, distances of one pixel in the orientations of 0◦, 90◦, 45◦, and 135◦

are used to extract the co-occurrence features from the horizontal, vertical, and
diagonal detail sub-images, respectively.29 In other words, the co-occurrence fea-
tures in four orientations can be extracted from a CCTV image for the pipe defect.
The co-occurrence features in each orientation consist of angular second moment
(ASM), entropy (ENT), contrast (CON), homogeneity (HOM), dissimilarity (DIS),
correlation (COR), and cluster tendency (CLU), and can be calculated as follows:

ENT =
n∑
i=1

n∑
j=1

Pij logPij , (3.16)

ASM =
n∑
i=1

n∑
j=1

P 2
ij , (3.17)

CON =
n∑
i=1

n∑
j=1

(i− j)2Pij, (3.18)

HOM =
n∑
i=1

n∑
j=1

Pij
1 + (i− j)2

, (3.19)

COR =

n∑
i=1

n∑
j=1

(i · j)Pij − µxµy

σxσy
, (3.20)

CLU =
n∑
i=1

n∑
j=1

(i− µx + j − µy)2 · Pij , (3.21)

DIS =
n∑
i=1

n∑
j=1

|i− j|Pij , (3.22)

where

Pij =
Mij

n∑
i=1

n∑
j=1

Mij

, (3.23)

µx =
n∑
i=1

n∑
j=1

i · Pij , (3.24)

µy =
n∑
i=1

n∑
j=1

j · Pij , (3.25)



March 18, 2011 15:41 WSPC/S0219-6913 181-IJWMIP
S0219691311004055

Feature Extraction of Sewer Pipe Defects 219

σx =

√√√√
n∑
i=1

n∑
j=1

(i− µx)2 · Pij , (3.26)

σy =

√√√√
n∑
i=1

n∑
j=1

(j − µy)2 · Pij . (3.27)

4. Results and Discussions

According to the diagnosis result, most of the detected pipe defects were found
within system G which comprises 291 frames of CCTV. A statistics for the 291
CCTV images reveals that open joint, crack, broken pipe, and fracture are the
major pipe defects, and appears on 107, 112, 16, and 56, respectively, frames of
CCTV images. Figure 4 shows the typical CCTV images of the four pipe defects
collected from system G.

4.1. Texture analysis

The averages of the co-occurrence features in the four orientations were respec-
tively computed to describe the textures of the pipe defects. Tables 1–4 present

Fig. 4. CCTV image examples.
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Table 1. Co-occurrence features in the orientation of 0◦.

Open joint Fracture Crack Broken pipe

ASM 0.041 0.011 0.016 0.018
CON 219.739 343.183 285.528 378.26
HOM 0.423 0.258 0.3 0.299
ENT 2.016 2.495 2.241 2.419
DIS 6.081 8.771 6.953 9.287
COR 0.641 0.547 0.6 0.528
CLU 996.304 1173.165 725.077 1200.021

Table 2. Co-occurrence features in the orientation of 90◦.

Open joint Fracture Crack Broken pipe

ASM 0.032 0.021 0.025 0.018
CON 338.008 437.972 301.804 409.582
HOM 0.384 0.304 0.34 0.295
ENT 2.21 2.368 2.141 2.454

DIS 7.91 9.574 6.917 9.655
COR 0.612 0.565 0.584 0.6
CLU 996.304 1173.165 725.077 1200.021

Table 3. Co-occurrence features in the orientation of 45◦.

Open joint Fracture Crack Broken pipe

ASM 0.048 0.012 0.014 0.013
CON 302.997 489.327 370.482 484.55
HOM 0.394 0.239 0.263 0.251
ENT 2.054 2.497 2.301 2.514
DIS 7.229 10.636 8.456 10.871
COR 0.399 0.304 0.351 0.324
CLU 711.108 894.65 791.902 948.444

Table 4. Co-occurrence features in the orientation of 135◦.

Open joint Fracture Crack Broken pipe

ASM 0.035 0.015 0.016 0.014
CON 423.872 555.004 403.423 596.865
HOM 0.363 0.254 0.284 0.253
ENT 2.169 2.455 2.254 2.518
DIS 8.821 11.129 8.523 11.783
COR 0.393 0.345 0.398 0.319
CLU 969.106 1126.746 953.434 1155.508

the computed co-occurrence features in the orientations of 0◦, 90◦, 45◦, and 135◦,
respectively. Obviously, the values of ASM and HOM of open joint are larger than
the others that means open joint having more homogenized texture relative to the
other pipe defects. Also, the values of ENT of broken pipe are mostly larger than
those of the other pipe defects. Thus, CCTV images of broken pipe usually have
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a display of complex texture. For all four pipe defects, the values of COR in the
orientations of 0◦ and 90◦ are larger than those in the orientations of 45◦ and 135◦.
It demonstrates that the correlations of detail images in the horizontal or vertical
orientations are better than those in the diagonal orientation. In this paper, the
averages of ENT, ASM, CON, HOM, COR, CLU, and DIS in the four orientations
were used to represent the textural features of the pipe defect patterns.

4.2. Correlation test of the co-occurrence features

Even though the texture of a pipe defect could be described by ASM, CON, HOM,
ENT, DIS, COR, and CLU, redundant features increase the difficulty of pattern
recognition with no accuracy improvement of texture description. To search the
appropriate feature sets, a correlation test shown as Table 5 was done for the seven
co-occurrence features extracted from the 291 CCTV images. It is found that CLU
vs. COR has a least correlation coefficient, −0.188. All of the correlation coefficients
of ASM vs. CON, CON vs. HOM, ASM vs. COR, CON vs. COR, HOM vs. COR,
ENT vs. COR, ASM vs. CLU, HOM vs. CLU, and ENT vs. CLU, are less than
0.5. In conclusion of the correlation test, (ASM, COR, CLU), (HOM, COR, CLU),
and (ENT, COR, CLU) are considered as the candidate feature vectors due to low
correlation coefficients.

4.3. Discriminant analysis of the textural features

A discriminant analysis available in the SPSS 13.0 for Windows software was used
to evaluate the discriminability of the obtained textural features. Tables 6–10 show
the discriminant analysis results based on ASM, HOM, ENT, COR, and CLU,
respectively. Each discriminant analysis result lists the producer’s and user’s accu-
racies. The procedure’s accuracies resulted from dividing the number of correctly
classified pipe defect patterns in each category (on the major diagonal) by the num-
ber of training set pipe defect patterns used for that category (the column total) so
to indicate how well the training set pipe defect patterns were classified. The user’s
accuracies were computed by dividing the number of correctly classified pipe defect
patterns in each category by the total number of pipe defect patterns that were
classified in that category (the row total) in order to measure commission error.

Table 5. Correlation matrix of the co-occurrence features.

ASM CON HOM ENT DIS COR CLU

ASM 1.000 −0.324 0.945 −0.850 −0.556 0.250 −0.242
CON 1.000 −0.423 0.501 0.869 −0.445 0.943
HOM 1.000 −0.948 −0.701 0.390 −0.311
ENT 1.000 0.824 −0.480 0.363
DIS 1.000 −0.565 0.746
COR 1.000 −0.188
CLU 1.000
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Table 6. Discriminant analysis based on ASM.

Predicted sewer defect membership

Original Open joint Cracks Broken pipe Fractures Column total

Open joint 23 17 3 14 57
Cracks 77 89 13 36 215
Broken pipe 0 0 0 0 0
Fractures 7 6 0 6 19

Raw total 107 112 16 56 291

Producer’s accuracy (%) User’s accuracy (%) Overall accuracy = 40.5%

Open joint 21.5 Open joint 40.3
Cracks 79.5 Cracks 41.4
Broken pipe 0.0 Broken pipe 100.0
Fractures 10.7 Fractures 31.6

Table 7. Discriminant analysis based on HOM.

Predicted sewer defect membership

Original Open joint Cracks Broken pipe Fractures Column total

Open joint 58 57 3 21 139
Cracks 48 53 11 35 147
Broken pipe 0 0 2 0 2
Fractures 1 2 0 0 3

Raw total 107 112 16 56 291

Producer’s accuracy (%) User’s accuracy (%) Overall accuracy = 38.8%

Open joint 54.2 Open joint 41.7
Cracks 47.3 Cracks 36.1
Broken pipe 12.5 Broken pipe 100.0
Fractures 0.0 Fractures 0.0

Table 8. Discriminant analysis based on ENT.

Predicted sewer defect membership

Original Open joint Cracks Broken pipe Fractures Column total

Open joint 74 55 6 29 164
Cracks 31 55 5 22 113
Broken pipe 0 1 4 3 8
Fractures 2 1 1 2 6

Raw total 107 112 16 56 291

Producer’s accuracy (%) User’s accuracy (%) Overall accuracy = 46.4%

Open joint 69.2 Open joint 45.1
Cracks 49.1 Cracks 48.7
Broken pipe 25.0 Broken pipe 50.0
Fractures 3.6 Fractures 33.3
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Table 9. Discriminant analysis based on COR.

Predicted sewer defect membership

Original Open joint Cracks Broken pipe Fractures Column total

Open joint 69 65 2 22 158
Cracks 35 41 6 26 108
Broken pipe 0 1 5 3 9
Fractures 3 5 3 5 16

Raw total 107 112 16 56 291

Producer’s accuracy (%) User’s accuracy (%) Overall accuracy = 41.2%

Open joint 64.5 Open joint 43.7
Cracks 36.6 Cracks 38.0
Broken pipe 31.3 Broken pipe 55.6
Fractures 8.9 Fractures 31.3

Table 10. Discriminant analysis based on CLU.

Predicted sewer defect membership

Original Open joint Cracks Broken pipe Fractures Column total

Open joint 71 40 7 39 157
Cracks 35 71 6 16 128
Broken pipe 1 1 2 1 5
Fractures 0 0 1 0 1

Raw total 107 112 16 56 291

Producer’s accuracy (%) User’s accuracy (%) Overall accuracy = 49.5%

Open joint 66.4 Open joint 45.2
Cracks 63.4 Cracks 55.5
Broken pipe 12.5 Broken pipe 40.0
Fractures 0.0 Fractures 0.0

Tables 6–10 show that the pipe defects with more training patterns, such as open
joint or cracks, have the better producer’s accuracy. On the contrary, those with
the less training patterns, such as broken pipe or fractures, have the better user’s
accuracies. Both of the user’s accuracies of broken pipe in Tables 6 and 7 are 100%;
however, only two of its 16 patterns were correctly classified in Table 7. Even no
pipe defect patterns were classified into broken pipe in Table 6. Among the textural
features, the obtained overall accuracy based on CLU is the best (see Table 10).
Most of the patterns of open joint (71 of 107) and cracks (71 of 112) were correctly
classified. Considering the result of the correlation test in Sec. 4.2, it is suggested
that (ENT, COR, CLU) is the best feature vector due to the better overall accu-
racies based on ENT and COR.

5. Conclusion

In this paper, wavelet transform and co-occurrence matrices were integrated
to extract the co-occurrence features including angular second moment (ASM),
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entropy (ENT), contrast (CON), homogeneity (HOM), dissimilarity (DIS), correla-
tion (COR), and cluster tendency (CLU) for a description of pipe defects. The pipe
defect of open joint on CCTV images was found to have the consistent textures due
to large ASM and HOM values. On the contrary, most CCTV images of broken pipe
display the complex textures because of the multiple sizes and shapes of debris.

A correlation test was implemented on the seven co-occurrence features to obtain
an appropriate feature set for a further automated diagnosis of pipe defects. Based
on the result of the correlation test (ASM, COR, CLU), (HOM, COR, CLU), and
(ENT, COR, CLU) are considered as the candidate feature vectors due to low
correlation coefficients (0.5). Moreover, COR was found to be rarely relevant to
CLU. Finally, a discriminant analysis was processed to evaluate the discriminability
of the pipe defects, and (ENT, COR, CLU) is the best feature vector according to a
comparatively high discriminant accuracy. Consequently, the lower the correlation
coefficients between the textural features are, the better the discriminability of pipe
defects is.
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