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Augmented Reality (AR) is an integrated technique of image processing and display system of complex infor-
mation, which involves real-time computing, motion tracking, pattern recognition, image projection, data-
base linking, feature extraction, and coordinate transformation. In this study, such techniques through
Structure From Motion (SFM), Clustering Views for Multi-View Stereo (CMVS), Patch-based Multi-View Ste-
reo (PMVS), and Poisson surface reconstruction were smoothly integrated into a 3D reconstruction system
with comparative efficiency in computation. The system can be applied to regular images taken by amateur
cameras, smart phones, tablet PCs, and other mobile devices, without need of a priori internal and external
camera parameters. To verify the ability of the established reconstruction system, indoor and outdoor objects
at various scales, such as a helmet (a small object), a corridor (an indoor medium object), an arbor (outdoor
medium object), and a building (outdoor large object) were tested. Through tracking and registration, the
reconstructed 3D models were loaded in an AR environment to facilitate displaying, interacting, and render-
ing that provides AR applications in construction design and management for better and qualitative commu-
nication in economical and handy ways.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Three-dimensional (3D) reconstruction techniques have been de-
veloped with substantial effort and can be conducted by either tradi-
tional surveying or novel 3D modeling systems. Traditionally,
remotely sensed reconstruction techniques include two major
methods, such as airborne image photogrammetry and LiDAR (Light
Detection And Ranging). Photogrammetry is a sophisticated tech-
nique for 3D reconstruction [1], but it is high in time and financial
costs. In previous decade, a LiDAR technique has been developed to
build a Digital Elevation Model (DEM) with time-efficiency and high
accuracy, but the cost of equipment and the difficulty of cloud point
processing must still be improved [2].

To overcome the disadvantages of traditional reconstruction
methods, computer visual techniques have been introduced into 3D
modeling systems in recent years. Such techniques are Simultaneous
Localization And Mapping (SLAM) [3], Project Photofly from
Autodesk [4], Multi-View Stereo (MVS) [5], Photo Tourism [6],
Bundler [7], Clustering Views for Multi-View Stereo (CMVS) [8,9],
Patch-based Multi-View Stereo-Version 2 (PMVS2) [10,11], and ARC
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3D Webservice [12]. All of the aforementioned techniques adopt
computer visual techniques to reconstruct 3D models without requir-
ing photogrammetry information, such as interior and exterior
orientations.

Image-Based Modeling (IBM) is considered as a passive system
and includes three major methods, such as depth-map-based ap-
proaches, volume-based approaches, and surface-based approaches.
One of the major surface-based approaches to obtain a 3D structure
in the state of motion is called Structure from Motion (SFM), which
was first introduced to search for the same feature points in different
images, which recover the imaging scene and estimate the location
and orientation of the camera. Once the camera orientation parame-
ters are available, the 3D coordinates of the cameras and the
image-based point cloud can be found. The main principle of the
SFM is to establish the relationship between the different images by
analyzing the relative and absolute positions of the field image.
Tristrom and Robert used various feature detection techniques, such
as Harris, SUSAN, and the Scale Invariant Feature Transform (SIFT) al-
gorithm for corner and feature detection [13,14]. Gabriel et al. intro-
duced a novel method to identify 3D objects using the point cloud
of SFM because of its adaptability to construct an acceptable model
structure in any scattered level of the cloud point structure [15].
Without requiring any observed measurement, SFM is able to identify
location, orientation, and geometry from images [16]. Once the interi-
or and exterior parameters (such as focal length, location and orienta-
tion of camera, and object coordinates) are known, Augmented
Reality (AR) provides the functions of tracking and registration,
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Fig. 1. Role of this research playing in reality–virtuality continuum.

Fig. 2. Schema of the proposed system.
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displaying, rendering, interacting devices and techniques, and
presenting and authoring the reconstructed 3D model [17].

The AR system has been developed for more than 40 years since ul-
timate displaywas introduced in 1965 [18]. In 1968, the first AR system
was created using an optical see-through head-mounted display and
was tracked using one of two different 6 Degrees of Freedom (DoF)
trackers; however, only extremely simple wireframe drawings could
be displayed in real time [19]. Following the inventions of the central
processing unit (CPU) and smart-phone in the 1990s, AR was coined
to refer to overlaying computer-presented materials on top of the real
world [20]. With the development of the webcam and Internet,
Milgram and Kishino described a continuum that spans from Augment-
ed Virtuality, which is closer to the virtual environment, to Augmented
Reality, which is closer to the real environment [21]. In the previous de-
cade, ARwas applied inmanyfields, such as the GPS (Global Positioning
System) receiver, a head-worn electronic compass and GIS (Geographic
Information System) database combined as a personal guide [22], and
the Chameleon system displaying spatially situated information using
a tracked hand-held device [23]. Similar to the Chameleon system,
NaviCam used a nearby powerful workstation with a camera mounted
on the mobile screen for optical tracking to detect color-coded markers
on the live camera image and display context sensitive information on
top of the video feed in a see-through manner [24]. 2D matrix markers
were introduced to allow camera tracking with 6 DoF [25]. The prelim-
inary spatial information survey in AR provided awidely acknowledged
definition [26], and a touring machine was presented by equipping the
first mobile augmented reality system (MARS) [27]. Starner et al. creat-
ed an interconnecting network community for users equipped with
wearable computers and explored possible applications of mobile AR,
such as an information system for offices, people recognition, and
coarse localization using infrared beacons [28]. A backpack-basedwear-
able computerwas introduced to construct an AR platformused for sev-
eral AR projects [29]. The ARToolKit was a pose tracking library with 6
DoF using square fiducials and a template-based approach for recogni-
tion as an open source under the GPL license [30,31]. Since the first
GSM (Global System for Mobile communications) phone with a
built-in GPS receiver and WiFi were released in 1999, GPS and the RTK
technique were integrated in a mobile AR system [32]. In 2000s, the
synergy of AR created new possibilities in the field of 3D data visualiza-
tion, navigation, and interaction far beyond traditional static navigation
and interaction [33]. Many previous studies have combined the
smart-phone, GPS, GIS database, and AR technology to achieve a new
3Dworld, such as the AR-Quake game [34], a mobile Passive Augment-
ed Reality Device (mPARD) [35], Battlefield Augmented Reality System
(BARS) [36], PDA-based BatPortal localizing by measuring the travel
time of ultra-sonic pulses between specially built devices worn by the
users [37], TOWNWEAR using a fiber optic gyroscope for orientation
tracking [38], and a mobile and multi-user AR system [39]. Currently,
AR techniques are closer to reality because of the development of mo-
bile AR applications andmobile entertainment games [40–42]. In recent
studies, AR has been established in mobile phones as institution guide
[43]. Furthermore, additional new techniques and devices have been
added to enhance and extend AR applications. The first real-time 6
DoF implementation of natural feature tracking heavily modified the
well-known SIFT and Ferns methods to accelerate processing and re-
duce memory requirements [44]. MapLens is a mobile AR map using a
magic lens over a paper map to facilitate place-making by creating a
constant need for referencing to the physical world [45]. In surveying
applications, 3D virtual rectangular objects with a scale were located
on the grid of 3D geographical model, and were displayed in an
overlapping manner with the actual landscape from multiple view-
points using the AR technology [46].

Although image-based point cloud models are less accurate com-
pared to laser scanner point cloud models, it provides the opportunity
of automatically visualizing the as-built scene through geo-registered
site photographs with much less effort and no cost [16]. Although
there are some 3D scene reconstruction products in the market, such
as Acute3D and Pix4D, the reconstruction processes of those commer-
cial products are unreleased to the public so that great cost and specific
equipment are often required for 3Dmodeling. To provide economic ac-
quisition equipment and low expertise requirement, this paper em-
ploys open sources of multiple image-based modeling approaches to
establish an efficient 3D reconstruction process and displays the
reconstructed 3D models in an AR environment for construction man-
agement. SinceAR is considered as a new technique of image processing
and displays system of complex information, which involves real-time
computing, motion tracking, pattern recognition, image projection, da-
tabase linking, feature extraction, and coordinate transformation, this
study integrates these techniques situated in a reality–virtuality contin-
uum, as shown in Fig. 1, to achieve real-time, time efficient, cost eco-
nomic, user friendly, and easy-carrying goals.
2. Methodology

As shown in Fig. 2, SFM, CVMS, PMVS, and Poisson Surface Recon-
struction (PSR) [47] were adopted to reconstruct a real 3D model. The
proposed 3D reconstruction method was applied to four indoor and
outdoor test sites at various scales, such as a helmet, a corridor, an
arbor, and a building, which were displayed in the AR system. The de-
tails of the process are addressed as follows.

image of Fig.�2
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2.1. Structure from motion

Photogrammetry is the main method of the multi-perspective tech-
nique to solve the 3D coordination of field points using numerous im-
ages. In traditional photogrammetry, if the image orientation is
known, the ground coordination can be obtained through aerial trian-
gulation; by contrast, if the ground 3D coordination is unknown, the
image orientation should be inversely transformed and calculated.
Computer vision and photogrammetry techniques, such as SIFT,
RANSAC (RANdom Sample Consensus) [48], and bundle adjustment,
were introduced to automatically calculate the point relationships and
simultaneously solve the orientation of camera exposure stations and
scene structure. Integration of photogrammetry and computer vision
is fundamental in Structure From Motion (SFM). Without requiring
any observedmeasurement, SFM is able to identify the 3D camera posi-
tion and scene geometry by determining the configuration of cameras
and 3D points. As shown in Fig. 3, this study searched for the feature
points between each pair of images, constructed the relationship of fea-
ture points, and computed a series of corresponding fundamental ma-
trix. Based on the fundamental matrix, the best pair images can be
considered as the initial images for reconstruction, and then new cam-
eras are iteratively added into sparse bundle adjustment [49] to opti-
mize the parameters and ultimately obtain scattered cloud points.

Structure From Motion has three main tasks: analyzing camera
motion and target shooting, recovering the camera moving track,
and finally constructing target objects in a 3D scene [50]. The process
of SFM in Fig. 4 involves matching the first image to another, repeat-
ing the matching process for all images, and deleting mismatched im-
ages to obtain the relative camera position.
Fig. 3. Flowchart of SFM.
2.1.1. Feature detection by SIFT
The SIFT algorithm extracts feature points for fundamental attri-

butes in experimental images, and records the corresponding images
in the database for tracking process and camera continuous motion
calculation. Because of highly significant and relatively easy to cap-
ture feature points, the SIFT algorithm is commonly used in computer
vision. Based on the appearance of local points of interest, the SIFT al-
gorithm can effectively resist the size and rotation difference of im-
ages. The tolerance of SIFT in light, noise, view and zoom-in/out is
quite high, and can accurately identify object features in the large
number of non-parametric database [51].

However, a time-consuming and inefficient problem remains in
SIFT implementation, because the SIFT algorithm tries to find a great
amount of feature points while a large region is reconstructed. To re-
solve this problem, this study used GPU (Graphics Processing Unit) to
program the SIFT process in a GPU system as SIFTGPU [52].

2.1.2. Feature matching by ANN
In the feature matching process, tracking images according to

SIFT-detected feature points is employed to observe the field and
the camera motion relationship and build correspondence [51]. For
every pair of images I and J, F(I) is the set of features in image I. Let
each feature fi∈F(I) and its corresponding feature fi ’∈F(J) find its
nearest neighbor fnn∈F(J) [53] by

f nn ¼ argminf ’∈F Jð Þ‖f i ¼ f
0

i‖2: ð1Þ

To raise the efficiency of feature matching, this study adopted ANN
(Approximate Nearest Neighbors) library established by Arya and
Mount [54] to construct the relationship of feature points between
image pairs, so-called track. The feature points in image J are adopted
to create less than 200 bins in kd-Tree data structure and search for
the nearest points from J to I. Having a candidate pair of matching fea-
tures (f,fnn), one can calculate the nearest and the second nearest dis-
tances between the features, d1 and d2, respectively. A ratio test (d1/
d2) proposed by Lowe [51] was adopted as a threshold instead of the
nearest neighbor distance to cut improper corresponding features off.
In this paper, a pair of corresponding features with a ratio of d1/d2
greater than 0.6 are excluded in the correspondence track for the fol-
lowing 3D reconstruction. After matching features I to J, each feature
fi∈F(I) was paired with at most one feature in F(J).

2.1.3. Fundamental matrix computation
The EXIF (Exchangeable Image File) format, which is bundled with

digital photos by most cameras, provides image information that can
preliminarily supply approximations to calculate the possible config-
urations of the two cameras and their corresponding epipolar geome-
try [55]. The epipolar geometry of an image pair can be expressed in a
3×3 rank-2 matrix, so-called fundamental matrix (F or F-matrix),
which describes the relative positions and orientations of the two
cameras as well as internal camera settings such as zoom. Each pair
of the corresponding points (x, y)→(x′, y′) in two corresponding im-
ages must satisfy the epipolar constraint [55]:

x′FxT ¼ 0 ð2Þ

FeK�1T T½ ��RK ′�1 ð3Þ

where x=[x y 1],x '=[x′ y′ 1]. R is the rotation matrix, and K is the
intrinsic camera matrix as

K ¼
k11
0
0

k12
k22
0

k13
k23
1

24 35: ð4Þ
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Fig. 4. SFM schematic diagram.

Fig. 5. F-Matrix computation.
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The focal length ratio (fk) can be estimated using EXIF or k as [6]

f k ¼ f EXIF ; if 0:7f k < f EXIF < 1:4f k;

f k ¼
k11 þ k22

2
; otherwise:

8<: ð5Þ

In addition, T ¼ txtytz
� �T is a 3-vector presenting to offset of the

camera center as:

T½ �� ¼
0
tz
�ty

�tz
0
tx

ty
�tx
0

24 35: ð6Þ

Obviously, the F-matrix contains the camera intrinsic matrix and
extrinsic matrix. This study adopted RANSAC [48] to determine the
F-matrix for all image pairs based on the estimate provided by an
eight-point algorithm [55] that was reported to be efficient in regu-
larization problems and noise improvement [56]. The F-matrix com-
putation is shown in Fig. 5. In this paper, the outlier threshold of the
RANSAC is set as a mapping error in pixel greater than 0.6% of the
maximum of the image width and height to determine if each indi-
vidual feature match is consistent with the F-matrix [6]. After remov-
ing the outlier points, the remaining features were added into
RANSAC for iteration until the determination of F-matrix approached
1. The correspondence of the qualified features in all images was
stored in the track.

2.1.4. Triangulation
Triangulation involves reconstructing 3D coordinates of the corre-

sponding features by detecting the motion tracking orientation of the
features. The more overlap that exists between two images (or the
longer the baseline that exists), the more favorable the reconstruction
result. To enhance the coordinate accuracy, homography [55] was
adopted to screen the corresponding features identified using the
F-matrix in 2D pair images by defining a cut-off ratio of a mapping
error over the maximum of the image width and height as 0.4% [6].
Direct Linear Transform (DLT) technique described in Hartley's [55]
can initialize the exterior parameters of new camera for five-point al-
gorithm [57] to establish the homography of an image pair in
RANSAC. At least 100 corresponding features are needed to make an
image pair qualified for the following SFM process.

The SFM detects the camera parameters, such as interior and exte-
rior matrices, and 3D coordinates of features, and insists that the
F-matrix be the same in the reprojection error. By minimizing the
sum of the distances between every track point projection to the cor-
respondence as shown in Fig. 6, the objective function can be [6]:

min∑n
i¼1∑

m
j¼1ωij‖qij� P Ci;Xj

� �
‖
2

ð7Þ

P Ci;Xj

� �
¼ Ki½Ri Tij �Xj ð8Þ

where a set of camera parameters, C={C1,C2,…,Cn}, consists of the
parameter collection of a camera, Ci={ci,Ri, fi,k1i,k2i} and X=
{X1,X2,…Xm}, and 3D point coordinate, Xj=(Xjx,Xjy,Xjz), is projected
to a point P in 2D image I. ωij is an indicator, where ωij=1 if camera
i observes point j otherwise ωij=0. By minimizing the distance be-
tween the calculated point P and the observed point qij, the 3D

image of Fig.�4
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Fig. 6. Reprojection error.
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coordinates of the features and camera parameters can be modified.
Radial distortion of each camera affects the accuracy of the recon-
struction. k1 and k2 are distortion parameters that can be modeled
in a quartic polynomial for many consumer cameras and lenses that
produce images with noticeable non-linear distortions. This study es-
timated the radial distortion parameter for each camera using a 2D
mapping function from p (px,py) to a distortion point p′(x′,y′) [6]:

p′ ¼ ap; a ¼ k1ρ2 þ k2ρ4
;ρ2 ¼ px

f

� �2
þ py

f

� �2
ð9Þ

where f is the estimated focal length. While initializing a new camera,
k1 and k2 can be set as 0.

2.1.5. Bundle adjustment
Because of the rotation, perspective division, and radial distortion,

resolving SFM becomes a non-linear problem. Generally, minimization
of the reprojection error through non-linear least squares is a process
known as bundle adjustment. Bundle adjustment is used to optimize
thepoint position estimation in SFMusing amultiple overlap imagemu-
tual restraint and a collinearity formula that is iteratively repeated to ob-
tain point coordination until numerical convergence [58]. Eventually, all
interior parameters can be modified through bundle adjustment.

Although the Levenberg–Marquardt algorithm can solve the
non-linear problem, it only ensures the local minimum and might
possibly miss the global minimum in the large-scale SFM problem.
To overcome the localization crisis, this study estimated camera pa-
rameters by progressively adding one camera every time instead of
estimating all camera parameters at once. This study used the Sparse
Bundle Adjustment (SBA) package provided by Lourakis and Argyros
[49], which is based on the Levenberg–Marquardt method.

The camera exterior matrix includes a 3×3 rotation matrix (R)
and a translation vector (T). To reduce the parameters, an incremen-
tal rotation R θ ^;nð Þ is defined as [6]:

R θ ^;nð Þ ¼ I þ sin θ n̂½ �� þ 1− cos θð Þ n̂½ �2�;ω ¼ θn̂; n̂½ ��

¼
"
0 −n̂z n̂y
n̂z 0 −n̂z

−n̂y n̂z 0

# ð10Þ

where θ is an angle of rotation with respect to a 3-vector unit axis, n̂.
R θ ^;nð Þ is pre-multiplied by the initial rotation matrix to compute the
current rotation inside the global optimization. R θ ^;nð Þ is nearly linear
in ω for small incremental rotations.
Through bundle adjustment, non-linear iterative optimization ap-
proach, such as the Gauss–Newton iterative method, was adopted to
minimize R θ ^;nð Þ. The initial parameters are obtained by Newton's
method after iteration. Because Newton's method is suitable for linear
problems and may converge to a saddle point rather than to the glob-
al minimum, this study used the Levenberg–Marquardt method to
find the correct cost function. Let θ→θ+δθ and f(θ) be smaller.
According to the Taylor series:

f θþ δθð Þ≈f θð Þ þ gTδθþ 1
2
δθTHδθ ð11Þ

where g is the gradient, and H is the Hessian matrix. Let
df
dθ θþ δθð Þ≈g þ Hδθ≈0

δθ ¼ −H−1g ð12Þ

Eq. (12) can be rewritten in terms of Jacobian J as Gauss–Newton
or normal equations:

JTWJ
� �

δθ ¼ −JTWΔz: ð13Þ

Eq. (7) can be solved using Eq. (13), which can evaluate the min-
imum for well-parameterized bundle problems under an outlier-free
least squares [55]. Finally, the features derived by SFM were loaded in
a custom coordinate system according to the relative point positions.
In addition, this study recompiled Bundler [7] to structure unsorted
image sets of SFM for more efficient implementation.

2.2. Multi-view stereo

Using camera parameters and sparse 3D feature coordinates from
SFM as initial information, Clustering Views for Multi-View Stereo
(CMVS) [9] provides multi-view stereo vision by grouping images
with similar views to improve computation efficiency, as shown in
Fig. 7. Based on the grouped images identified by CMVS, PMVS
(Patch-based Multi-View Stereo), which is a patch-based algo-
rithm [11], generates additional cloud points into the 3D model
through three processes: matching, expansion, and filtering. The cal-
culation of PMVS was established by Furukawa et al. [11] with the de-
notation as:

c(p) the center of p
n(p) the unit normal vector of p
R(p) reference images of p
V(p) set of estimated images of p
V*(p) set of visible images of p

where p is a patch that is essentially a local tangent plane approxima-
tion of a surface with μ×μ pixels (in this paper, μ is 5 for all experi-
ments). The location of the patch depends on the center c(p). n(p)
can be observed from the camera position.

2.2.1. Feature matching
The Harris and DoG (Difference-of-Gaussians) filters are able to

capture the features from images, and then calculate the relationship
between features for each image. A 2D Gaussian filter with a standard
deviation σ can be expressed by Gσ [51]. To detect features, the DoG
filter and Harris filter can be expressed as:

DoG filter : D ¼ Gσ−G ffiffiffiffiffi
2σ

p
� �

� I
			 			 ð14Þ

where * denotes a 2D convolution operator, and

Harris filter H ¼ det Mð Þ−λtrace2 Mð Þ;M ¼ Gσ� ∇IVIT
� �

;∇I ¼ ∂1
∂x

∂1
∂y


 �T
ð15Þ
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Fig. 7. Flowchart of CMVS and PMVS.

Fig. 8. AR system architecture.
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where ∇ I is computed by convolving the image I with the partial de-
rivatives of the Gaussian Gσ. M is computed by convolving Gσ with
respect to each element in ∇ I [51].

In image Ii using a camera center 0(Ii), a feature f has a corre-
sponding feature f′ in image Ji. Based on the correspondence of
fandf′ using the triangulation of 3D points generated by SFM, an
epipolar line, which the corresponding feature locates on, can be cal-
culated in image Ji. The feature matching results in the center of the
patch, unit normal vector of patch, and reference images of the
patch all serve as an initialization:

c pð Þ← Triangulation from f and f ′
n o

;

n pð Þ←c pð Þ0 Iιð Þ= c pð ÞO Iιð Þj j;R pð Þ←Ii:

ð16Þ

In addition, the following constraint must be met:

V pð Þ← I n pð Þ⋅c pð Þ0 Ið Þ=c pð Þ0 Ið Þ
			 			 > cos ιð Þ

n o
ð17Þ

where ι=π/3 in the experiments.

2.2.2. Expansion
At this stage, we iteratively added new neighbors to existing

patches until they covered the surfaces visible in the scene. More in-
tensive corresponding patches can be expanded by inputting the first
partial initial scattered corresponding patch and correcting corre-
sponding points nearby to obtain accurate corresponding points
[11]. To confirm the expansion of the unit, this study initialized C(p)
through the collection of visual images of adjacent image elements:

C pð Þ ¼ Ci x′; y′
� �

p∈Qi x; yð Þ; x−x′
			 			þ y−y′

			 			 ¼ 1
			 on

ð18Þ

c pð Þ−c p′
� �� �

⋅n pð Þ
			 			þ c pð Þ−c p′

� �� �
⋅n p′
� �			 			b2ρ1 ð19Þ

where Ci(x,y) is a set of neighboring image patch of p, Ci(x′,y′)∈C(p).
If Ci(x′,y′)∈C(p), expansion is not necessary, then Ci(x′,y′) should be
removed from C(p). In other words, if the patch p of neighboring
image element contains a patch p′, p and p′ are defined as neighbors.

2.2.3. Filtering
Filtering was applied to the reconstructed patches to further en-

force visibility consistency and remove erroneous matches. Relying
on visibility consistency, p is filtered as an outlier if the following in-
equality holds [11]:

V� pð Þ		 		 1−g� pð Þ� 

b∑pi∈U pð Þ1−g� pið Þ: ð20Þ

Using updated V*(p), new photometric discrepancy function g(p)
can be in the term of g*(p):

V� pð Þ ¼ I I∈V pð Þ; h p; I;R pð Þð Þ≤aj gf ð21Þ

g� pð Þ ¼ 1
R pð Þ=V� pð Þj j∑I∈R pð Þ=V� pð Þh p; I;R pð Þð Þ ð22Þ

where h(p, I,R(p)) is a pairwise photometric discrepancy function be-
tween images I and R(p) [11].

The reliability of the corresponding points can be enhanced by
finding multi-view photometric consistency and corresponding
points near an epipolar line using these dense corresponding points
to obtain a stereoscopic view and object depth for 3D reconstruction
through CMVS and PMVS. Deleting incorrect and obstacle corre-
sponding patches according to visibility, PMVS searches dense 3D
cloud points to generate a comprehensive mesh in the next step.
Both CMVS and PMVS can automatically detect and delete obstacles
and outliers, which can be accomplished without any object informa-
tion. However, this method remains a brokenmap obstacle because of
deficient corresponding points.

image of Fig.�7
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Fig. 9. Geometrical relationship between AR pattern coordinate vs. camera coordinate
and real-world coordinate.
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2.3. Mesh reconstruction

After the 3D points have been corrected and reconstructed, the
Poisson Surface Reconstruction (PSR) algorithm can be adopted to
connect 3D points as mesh and form the more complete 3D model
[59]. The PSR algorithm can generate a 3D model with a smooth sur-
face and efficiently reduce noise impact by flexibly defining a mesh
size. This study used MeshLab, which is open source software using
PSR for mesh reconstruction [60].

2.4. Augmented reality

Bimber and Raskar described AR as a technique that is constructed
by complex information and image processing, such as tracking, regis-
tration, display technology, rendering, synthesizing devices and tech-
niques, presentation and authoring [17]. The most critical component
of AR is tracking and registration technique using a camera as the
image acquisition device whose real-time interior and exterior param-
eters, such as focal length, location and orientation of camera, and ob-
ject coordinates, can be calculated. Imagine that vision tracking is
composed of four tasks: 1) loading marked object image from camera;
2) analyzing the angle and position of tracking objects and calculating
the location and orientation of the camera; 3) loading 3D stereo virtual
objects and conducting stack operation; and 4) presenting the result
based on a 3D stereo analysis algorithm. Commonly, a tracking tech-
nique in computer vision consists of mark and non-mark types. The
mark technique is superior because of the accuracy and efficiency and
was thus used in this AR system.

2.4.1. AR system
An AR system consists of numerous imaging processing techniques,

such as fundamental digital image processing, computer vision, and
computer graphics. There are several developed platforms providing
AR developers with tool libraries. The ARToolKit [31] library (version
2.72.1) is commonly used and represents the core of AR application in
this paper. Data exchange and interaction in AR are essential compo-
nents and are structured as an AR system in Fig. 8. All open source
codes were transformed into application programming interface (API)
coded in C/C++ as an interface to allow the components to communi-
cate with each other, which makes easy to execute on smart handset
devices. The generated reconstruction models were transferred into
VRML models that can be explored in AR environment to facilitate
displaying, interacting, and rendering.

At first, the AR system obtains the image streams and image resolu-
tion through DSVL (Direct Show Video Library). Direct Show developed
in DSVL controls the camera through the driver. Image acquisition and
tracking recognition are simultaneously processed in the AR system.
The ARToolKit Library recognizes and tracks patterns defined a priori.
The constructed 3D models created in VMRL (Virtual Reality Modeling
Language) format are loaded into ARToolKit Library. Once the corre-
sponding pattern is recognized, the 3D model can be called out by the
ARToolKit Library. Finally, the 3D model is redrawn and projected on a
monitor using OpenGL. The ARToolKit Library calculates the position
and perspective of the 3D model based on the geometrical relationship
of the camera and patterns. The 3D model fitting in real-time images,
which are acquired through the camera controlled by Direct Show, is
displayed in VRML format on themonitor using OpenGL. The AR system
architecture consists of four steps:

(1) acquiring patterns in images from cameras;
(2) calculating the view point and location of the tracked pattern

to estimate the position and perspective of the 3D model;
(3) loading the 3D model and fitting with real images; and
(4) displaying the 3D model within real-world images on the

monitor.

In this paper, AR functions, such as recognition, video tracking,
and positioning provided in the ARToolKit (version 2.72.1), were
programmed in a modular format. Data exchange between modules
depends on external variables. OpenVRML (version 0.14.3) is an
open source library to process 3D models in VRML format that can
be displayed using OpenGL, which is built in Windows 7.

2.4.2. ARToolKit
The ARToolKit is a cross-platform function library which was com-

monly used in AR computer vision tracking [30]. ARToolKit software is
coded in C language to allow AR virtual image stacking in the real
world. Through tracking the defined marks by camera, 3D virtual ob-
jects can be constructed in OpenGL (OpenGraphic Library) and be accu-
rately stacked upon the marks. ARToolKit solves mark tracking and
virtual object interaction based on two key techniques, tracking and
registration, which are described as follows: (a) capturing the
real-world images through the camera, (b) searching AR patterns in
the images, (c) calculating the position of the camera relative to the
black square in the AR pattern, (d) recognizing the content of the AR
pattern, (e) drawing a 3D model of the real-world images, and finally
(f) interacting between users and 3D model in the AR system [31].

2.4.3. AR pattern
The AR pattern is one type of Trusted Reference (or Fiducially Mark-

er) for tracking and recognition, which is adopted in ARToolKit using fi-
ducial base tracking developed by Kato et al. [30]. The design of the AR
pattern should follow two criteria, (1) a white square within a black
square, and (2) asymmetric black-and-white or color signature within
the white square [25]. The AR pattern plays two roles: as a feature of
SFM in 3D construction and as a tracking and recognition reference in
the AR system. By contrast, the black-and-white pattern is a perfect fea-
ture to be identified in a pair images for feature detection. The AR pat-
tern is a rectangle with two pairs of parallel lines and four right
corners that facilitate F-matrix computation and result in accurate 3D
reconstruction. Based on the known dimensions of the AR pattern, the
reconstructed model is generated at an absolute scale. By contrast, the
position and perspective of the 3Dmodel are called out by the identified
pattern and are displayed on the monitor through the geometric trans-
formations among the AR pattern coordinate, camera coordinate, and
real world coordinate, as shown in Fig. 9.
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Fig. 10. Experimental objects in scene photos ((a), (e), (i), (m)), sparse point cloud ((b), (f), (j), (n)), dense point cloud ((c), (g), (k), (o)), and 3D reconstruction result ((d), (h), (l), (p)).
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2.4.4. OpenGL
OpenGL (Open Graphics Library) developed by Silicon Graphics Inc.

is a standard specification defining a cross-language, cross-platformAPI
for applications producing 2D and 3D computer graphics. OpenGL is
widely used in CAD, virtual reality, scientific visualization, information
visualization, flight simulation, and video games. OpenGL interface con-
sists of over 250 different function calls that can be used to draw com-
plex 3D scenes using simple primitives. In this AR system, OpenGL is
employed to redraw and present the 3Dmodel on a monitor according
to the simulated scenario from a human's viewpoint. The detailed de-
scription refers to the OpenGL Programming Guide [61] and Computer
Graphics Using OpenGL [62].
Fig. 11. AR patterns in this paper using Illustrator software.
2.4.5. VMRL (Virtual Reality Modeling Language)
Virtual Reality Modeling Language (VRML) is a text file format ex-

pressing vertices and edges for a 3D polygon specified along with the
surface color, shininess, and transparency. Virtual reality modeling
language (VRML) is suitable for numerous data processes such as
graphical components on a webpage and in 3D reconstructed models.
Animations, sounds, lighting, and other aspects of the virtual world
can interact with the user or may be triggered by external signals
such as the AR pattern in this study. Currently, many 3D modeling
programs save the reconstructed objects and scenes in VRML format,
so does this study.
3. Experiments and result analysis

3.1. Study sets

To verify the ability of the established reconstruction system, in-
door and outdoor objects at various scales, such as a helmet (a
small object), a corridor (an indoor medium object), an arbor (an out-
door medium object), and a building (an outdoor large object) as
shown in Fig. 10, were tested as Experiments I, II, III, and IV, respec-
tively. The corridor (Experiment II) is located on the third floor of a
6-story RC building (Experiment IV). The RC building and the arbor
(Experiment III) both are on the campus at National Chung Hsing
University (NCHU), Taiwan.

The equipment used in the experiments included a PC computer,
software, and a camera. The computer was equipped with Intel i7

image of Fig.�10
image of Fig.�11


Fig. 12. Point cloud for 3D reconstruction (a) without and (b) with AR pattern.
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870@2.93 GHz CPU, 16 GB memory RAM, NVIDIA GeForce GT 420
video card, Windows 7 OS, and VC++ 2010. The software includes
Bundler open source established by Noah Snavely and served as the
SFM program, CMVS (containing PMVS2) presented by Furukawa
and was recompiled as the CMVS program, and Poisson Surface Re-
construction in open source software Meshlab to edit point cloud
and construct surfaces. The imaging device was a camera, a Canon
EOS 5D Mark II equipped with a 35 mm f2 fixed focus lens. Finally,
this study employed ARToolKit library to program AR system. Also,
AR patterns shown in Fig. 11(a), (b), (c) and (d) for Experiments I,
II, III, and IV, respectively, were introduced into the reconstruction
process and can significantly overcome a serious problem of broken
map occurred in the 3D reconstructed models.

3.2. Experimental results

Most parts of the helmet were effectively reconstructed, except for
the transparent mask at the front of the helmet (Fig. 10(b)) because
of a sparse point cloud generated by SFM, which was caused by in-
complete light reflectance and transparency. Through CMVS and
PMVS, more cloud points (Fig. 10(c)) were generated but did not
completely recover the mask shape. In Experiment II, few corre-
sponding features were found on the white wall to cause a serious
broken map obstacle in the reconstruction. Even though the AR pat-
tern increased many corresponding features and cloud points, they
were limited only around the AR pattern and itself. In Experiment
III, an outdoor medium object (the arbor) was reconstructed using
surrounding images that provides better multi-view geometry. The
outdoor environment easily provides sufficient corresponding fea-
tures and cloud points to result in a complete reconstruction. Further-
more, the AR patterns pasted on the white columns helped overcome
a brokenmap obstacle for the column reconstruction (see Fig. 12). For
a large outdoor object (such as the RC building), reconstruction can
be effectively completed with many corresponding features because
of the outdoor complex light environment. However, all images of
the RC building were taken on the ground. A low imaging position rel-
ative to the building height results in a substantial limit to view the
object from various perspectives, thus causing distortion at the top
of the constructed RC building. If possible, surrounding images from
all aspects should be taken for a comprehensive reconstruction. For
a large-scale object, UAV (Unmanned Aerial Vehicle) images can be
an alternative to overcome the physical limit.

Fig. 13 displays the reconstructed 3D models from various view-
points. A reconstructed 3D model is more comprehensive if the im-
ages could be taken from all view angles toward the object. A short
baseline relative to the object size causes deformation and broken
spots in the reconstructed 3D model, such as the corridor because of
a space limit and the RC building because of a physical limit. In sum-
mary, the approach proposed in this paper is proven to effectively re-
construct a single, small object and complex large scale of outdoor
objects.

3.3. Estimation of focal length

The 3D reconstruction results were significantly influenced by the
focal lengths which were calculated by SFM and are shown in Table 1
for the 3D reconstruct experiments. The relationship between cloud
points and faces is positively correlated, and the reconstructed 3D
model is obviously more complete and realistic with the increase of
the cloud points and faces. The number of cloud points is determined
by image resolution and correspondence. In addition, the faces of the
3D model are established based on the cloud points as vertices. A
great density of cloud points is helpful to establish dense triangular
faces to obtain accurate parameters and reconstruct a more meticu-
lous 3D model with an accuracy of less than 1.5 pixels.
The estimated focal length can be calculated by multiplying the
mean of the focal length ratio derived in the K matrix of SFM by the
CCD size. The camera used in this study is a full-frame camera, a 5D
Mark II with a CCD size of 35 mm. According to Table 1, the mean
of the focal length ratio ranges from 0.999 to 0.986 with a CCD size
of 35 mm to obtain the estimated focal lengths ranging from 34.97
to 34.51, which are close to the nominal focal length of 35 mm.
With an additional AR pattern, the RMSE (Root-Mean-Square Error)
of the focal length ratio in the corridor and arbor experiments being
less than the others means that the focal lengths were estimated
with superior consistency in the experimental images, thus improv-
ing the reconstructed 3D models.

3.4. AR presentation

Fig. 14 shows the reconstructed 3D models viewed at various
scales in the AR system. It is demonstrated that in both indoor and
outdoor experiments, the accuracy of adopting AR pattern in the
image-based point cloud modeling was improved by approximately
15% in all three dimensions. With the AR pattern, the reconstructed
3D models can be registered in an absolute coordinate system so
that surveying-level measurement becomes possible. In addition, in
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Fig. 13. Reconstructed 3D models from various viewpoints.
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the AR environment the 3D models can be displayed with real-world
objects at various scales to show the visualizing relationship and in-
teraction between the reconstructed 3D and the real-world objects.
This is helpful for construction engineers to display their designs in
real environments and explore the interactions.
Table 1
Image information and the estimated focal length.

Helmet Corridor Building Arbor

Number of images 16 73 74 53
Image resolution (pixel) 21 M 21 M 21 M 21 M
Number of cloud points 71,563 126,415 385,463 139,335
Number of faces 134,706 250,809 767,592 276,938
Mean of focal length ratio 0.999 0.991 0.991 0.986
RMSE of focal length ratio 0.0116 0.0088 0.0137 0.0031
Estimated focal length (mm) 34.97 34.69 34.69 34.51
4. Conclusion

This paper presents an interactive system prototype by integrating
multiple image-based 3D reconstruction approaches and AR, which
was applied to four sets of 3D spatial models, including two indoor
objects and two outdoor construction objects. Image-based point
cloud models may not be as accurate and dense as laser scanners'
point cloud models, but it has advantages of being economic, easy
to use, and having low expertise requirement. Based on the results
of this study, several conclusions are drawn which are as follows:
1. Computer version techniques, such as SFM, CMVS, PMVS, and
Poisson Surface Reconstruction, were smoothly integrated into a
3D reconstruction systemwith comparative efficiency in computa-
tion, as compared with the traditional 3D reconstruction methods
or 3D scanners.
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Fig. 14. Reconstructed 3D models viewed in AR system at scales of (a) cup size and (b) human size.
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2. Unlike other image-based or conventional photogrammetric tech-
niques acquiring a rigid photo format, the image-based reconstruc-
tion model allows to input any kind of photos collected by
image-capturing devices, such as amateur cameras, mobile
phones, and tablet PCs, without need of a priori internal and exter-
nal camera parameters.

3. This paper adopts open sources of image-based modeling with
much less effort and no cost compared to the commercial 3D re-
construction software. Moreover, all open source codes were
transformed into API coded in C/C++, which makes it easy to ex-
ecute on smart handset devices.

4. The system can significantly reduce intensive labor, professional
expertise, and expensive equipment that can be fully automatic
and broadly applied to field surveying with visualization.
5. With additional AR patterns, a 3D model can be built with addi-
tional details by increasing the detected and matching features
and the 3D model accuracy of 15% in all three dimensions. The
geo-registered 3D models can be displayed in an absolute coordi-
nate system, instead of a relative coordinate system, that makes
measurements available in a surveying level.

6. The 3D reconstruction results show that surrounding images with
various perspective views enhance the density of cloud points and
result in a more comprehensive 3D model. To overcome the phys-
ical limit for outdoor large objects such as buildings, UAV images
can be an alternative to capture proper images.

7. The generated reconstruction models were transferred into VRML
models that can be explored in an AR environment to facilitate
displaying, interacting, and rendering that provides engineers to
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perceive the interaction between as-built scene and as-planned
construction in construction design and management. In the AR
environment, 3D CAD planed models are allowed to overlay to
the 3D scene reconstruction and to be visualized from different
viewpoints and scales.

In the future, the proposed system integrating image-based recon-
struction approaches and AR can be optimized and built in mobile de-
vices, which is convenient for on-field engineers to remotely assess
the daily progress of an ongoing construction project using handy
equipment and facilitates decision making on the necessary remedial
actions.
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