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Relating Vegetation Dynamics to Climate Variables
in Taiwan Using 1982–2012 NDVI3g Data

Hui Ping Tsai and Ming-Der Yang

Abstract—This research aims to improve our understanding of
vegetation dynamics and associated climate variables in Taiwan by
utilizing mean-variance analysis (MVA), relative directional per-
sistence analysis, and Pearson’s product moment correlation anal-
ysis on the Advanced Very High Resolution Radiometer (AVHRR)-
derived NDVI3g data from 1982 to 2012. The results indicate a
slightly increasing mean-normalized difference vegetation index
(NDVI) value with a relatively higher variance during the 1990s
and lower variance during the 2000s, which may be explained
by the observed fluctuation in precipitation. Additionally, NDVI
patterns are identified as increasing in the first half of the year
and decreasing in the second half of the year. Spatially, decreas-
ing patterns are observed in all regions except that the northern
counties exhibit an increasing NDVI pattern supported by the
observed increase in precipitation. Moreover, sunshine duration
and temperature are positively correlated with NDVI, whereas
precipitation and cloud amount exhibit a negative correlation
with NDVI in Taiwan. In the context of global environmental
change, this research highlights the utility of applying a combined
spatial–temporal approach to remote sensing products. This is an
approach with potential applications such as landscape manage-
ment, conservation practice, and water resource management for
policy makers and stakeholders in and beyond Taiwan.

Index Terms—Advanced Very High Resolution Radiometer
(AVHRR), climate, correlation, mean-variance analysis (MVA),
normalized difference vegetation index (NDVI), persistence, pre-
cipitation, remote sensing, Taiwan, vegetation.

I. INTRODUCTION

M ONITORING vegetation change over regional scales
using earth observing satellite data has greatly

improved our understanding of vegetation dynamics [1]–[5]. As
a way to understand these vegetation changes, normalized dif-
ference vegetation index (NDVI) time series data acquired by
sensors aboard satellites have been widely used since it pro-
vides an efficient, repeatable, and consistent measurement to
reflect the response of the earth’s ecosystem to interannual and
intraannual dynamics of biotic and abiotic drivers [6]–[10].

The NDVI derived from the Advanced Very High Resolution
Radiometer (AVHRR) onboard the National Oceanic and
Atmospheric Administration’s (NOAA) satellite series has been
considered as the longest temporal coverage and the best
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data set available for long-term analysis of vegetation dynam-
ics [11], [12]. NDVI is calculated as near-infrared spectrum
(NIR)-RED/NIR+RED to express the contrast between the two
spectra because the chlorophyll of vegetation absorbs strongly
in the red light spectrum (RED), whereas the cell structure of
the leaves reflects and scatters light in the high near-infrared
spectrum (NIR). NDVI has been closely linked with the fraction
of green vegetation, serving as a measurement of vegetation
abundance that has been applied to a number of vegetation indi-
cators and characteristics such as climate variability [13]–[22],
net primary productivity [23]–[28], land cover classifications
[29]–[33], vegetation phenology [34]–[42], drought detection
[43]–[48], and land degradation [49]–[54].

Climate variability is one of the major drivers controlling
interannual and intraannual vegetation variations. The relation-
ship between NDVI and climate variables has been extensively
studied worldwide [55]–[66]. Studies have suggested that pre-
cipitation and temperature are two major climate factors that
are linked closely to vegetation growth through the process of
photosynthesis [67]–[71]. Other factors such as land cover and
land use change (LULCC), sunshine duration, cloud amount,
soil moisture, and evapotranspiration all contribute to vege-
tation variation in diverse degrees [72]–[74]. Considering the
location, unique topography, and ecological characteristics of
Taiwan, understanding the relationship between NDVI and rel-
evant climate factors is critical to managing landscapes for the
joint benefit of human and natural systems. Several studies have
used vegetation indices to study the vegetation dynamics in
Taiwan. Chang et al. [75] related vegetation dynamics to tem-
perature and precipitation using Moderate Resolution Imaging
Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI)
data from 2000 to 2012 and found that the relationships
between EVI and temperature and between EVI and precipita-
tion are temporal scale dependent and vegetation/land-use-type
dependent. Another study applied principal component analy-
sis (PCA) to MODIS photosynthetically active vegetation cover
(PV) data to investigate interannual vegetation dynamics in
Taiwan from 2001 to 2011 [76]. Those findings reveal that the
sensitivity of Taiwan’s ecosystems may not only be controlled
by regional climate and human activities but may also be sus-
ceptible to large-scale climate anomalies such as the El Niño
Southern Oscillation (ENSO) [77], [78].

Additionally, many scholars have applied NDVI as a mea-
surement to assess short-term landscape change detection in
Taiwan, such as postdisaster evaluation [79]–[87], wetland
analysis [88], forest area evaluation [89], [90], and crop eval-
uation [14], while others have applied NDVI to ecological
research [91]–[93], land cover classification [76], and modeling
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Fig. 1. Study area.

[94]. Understanding vegetation dynamics is critically important
for explaining both abiotic–biotic interactions and providing
scientific assessments that can aid further environmental stud-
ies, modeling, and predictions. However, an integrated analysis
of long-term vegetation dynamics in Taiwan is missing and its
relationship with climate factors remains unexplored.

To fill in this gap, this study applied the mean-variance
analysis (MVA), relative directional persistence metric, and
Pearson’s product moment correlation analysis to investigate
more than three decades of vegetation dynamics (via AVHRR
NDVI3g data) and its relationship with climate variables in
Taiwan from 1982 to 2012. In this study, a comprehensive
island-wide overview of NDVI patterns is assessed so as to
answer three specific research questions: 1) what is the over-
all long-term NDVI pattern in Taiwan between 1982 and 2012?
2) how is the spatial pattern of monthly NDVI varied in Taiwan?
and 3) what is the relationship between NDVI and climate
variables, such as temperature and precipitation?

II. METHODOLOGY

A. Study Area

Taiwan (22◦–25◦N, 120◦–122◦E, Fig. 1) is an island located
at the western edge of the Pacific Ocean between Japan
and the Philippines and has a total land area of approxi-
mately 36 000 km2. With a population that increased from
20.4 million in 1990 to 23.3 million people in 2013, Taiwan
is experiencing growing pressure from its dense population
(645 people/km2) [95].

The annual precipitation in Taiwan is approximately
2500 mm, and the mean temperature is approximately 22 ◦C–
25 ◦C [96]. Taiwan’s climate variations are primarily affected
by the East Asian monsoon [97], [98] and further compli-
cated by the mountainous topography and land-sea distribution
[99], [100]. The Central Mountain Range (CMR) stretches from
the north to the south with the highest point at Yu Mountain
(3952 m); this mountain range divides the island into the west
and east coasts. In general, the climate in Taiwan is a marine
subtropical to tropical climate, which is considered to be humid
with moderate to high temperatures all year long; however,
large spatial variations exist throughout the course of the year
[97], [101], [102].

In general, Taiwan’s climate can be separated into the cold
season (September–April) and the warm season (May–August)
[97]. During the cold season, precipitation in Taiwan is influ-
enced by the northeasterly monsoon, while the southwesterly
monsoon affects Taiwan during the warm season [103], [104].
Additionally, a variety of transient subsynoptic disturbances
such as springtime cold fronts, Mei-Yu fronts, typhoons in the
summer months, and cold fronts in the fall all contribute to the
precipitation mechanism in Taiwan [97], [101], [104]. In addi-
tion to the prevailing monsoon flow, local rain showers related
to terrain or local winds also play an important role in gener-
ating precipitation. According to Taiwan’s diverse precipitation
mechanism, Wang et al. [105] categorized the rainfall regimes
in Taiwan into five categories: 1) winter (December–February);
2) the spring transition (March and April); 3) the Mei-Yu sea-
son (mid-May to mid-June); 4) the typhoon season (mid-July
to August); and 5) the autumn rainfall regime (September–
November). Based on previous studies and for convenience in
analysis, this study describes December–February as the winter
season, March–May as the spring season, June–August as the
summer season, and September–November as the fall season.

Furthermore, Taiwan’s precipitation regimes exhibit a high
level of spatial heterogeneity resulting from its diverse topogra-
phy and rainfall mechanism. For the northern part of island, the
spring rain (February–April) plays an important role [97]. The
northeasterly monsoon and tropical cyclone bring heavy rains
for the eastern part of the island from September to November.
The main rainy season for the central and southern parts of the
island occurs during the warm seasons with the Mei-Yu fronts
(May–June), summer afternoon convective activity, and tropical
cyclones, while the typical dry season starts in October [103].

B. NDVI Data

The third generation of the AVHRR NDVI3g dataset devel-
oped by Global Inventory Modeling and Mapping Studies
(GIMMS) group was utilized in this research [106]. The
AVHRR NDVI3g dataset has a temporal resolution of 15 days
and a spatial resolution of 1/12 degree (approximately 8 km)
and spans the period from July 1981 to December 2012.
The AVHRR NDVI3g dataset is generated from a series of
AVHRR sensors in the framework of the GIMMS project at
NASA’s Goddard Space Flight Center. NDVI values are cal-
ibrated using Vermote and Kaufman’s atmospheric Rayleigh
scattering over oceans methods. Volcanic stratospheric aerosol
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periods (1982–1984 and 1991–1994) have been established
and subjected to atmospheric corrections [107]. The empiri-
cal decomposition (EMD) reconstruction methods were applied
to correct the satellite orbital drift effect [108]. Additional
improved cloud masking and SeaWIFS NDVI data were used
to calibrate AVHRR NDVI3g data using Bayesian methods
[109] in order to minimize factors unrelated to changes in veg-
etation greenness. The 15-day NDVI3g data were aggregated
from the daily data using maximum value compositing method
[109], [110] to reduce cloud and aerosol contamination [111].
The AVHRR NDVI3g dataset is the currently longest available
NDVI dataset providing vegetation cover worldwide, which
offers a unique opportunity for long-term vegetation pattern
analysis. For this study, the image with higher value in each
month was obtained from January 1982 to December 2012, and
Taiwan’s land area was extracted for further analysis.

C. Climate Variables

Precipitation and temperature data were derived from the
Taiwan Climate Change Projection and Information Platform
(TCCIP) for the study period of 1982–2012 at a monthly time
scale with a spatial resolution of 5 × 5 km2. The TCCIP
datasets were generated using the inverse distance weighted
interpolation and weighted average methods suggested in [112].

The monthly cloud amount and sunshine duration data (in
hours) were obtained from the Central Weather Bureau of
Taiwan from 19 weather stations across the landscape for
the study period 1982–2012. These 19 weather stations were
selected based on the best available environmental data cov-
ering the study period. Of the 19 weather stations, there are
five, six, three, and five stations located in the northern, central,
southern, and eastern counties, respectively (Fig. 1). These 19
weather stations are considered as representatives for the four
major regions of Taiwan and can reflect the characteristics of
NDVI in Taiwan.

D. Mean-Variance Analysis

The MVA was developed to characterize an overall spa-
tial and temporal patterns of imagery [113] rather than local
patterns that are resulted from clustering or morphological
segmentation [114], [115]. Later, many scholars adapted the
method to delineate seasonal and interannual responses of veg-
etation to climate and disturbances [116]–[119]. The MVA
depicts dynamic systems graphically as a time-evolving pro-
cess by plotting the mean of the vegetation index (VI) response
versus its variance on a portrait.

A hypothetical relationship between mean-variance and veg-
etation status is shown in Fig. 2 [117]. The mean of VI can
be interpreted as the overall amount of vegetation within the
landscape (X-axis), and the variance can be interpreted as the
degree of landscape heterogeneity (Y-axis). Additionally, the
grand mean reference lines from the mean and variance of
VI (X- and Y-axes) classify the portrait into four quadrants,
where each quadrant reveals divergent degrees of spatial het-
erogeneity (variance) and vegetation status (mean). Generally,
Quadrant 1 (low mean and variance) symbolizes the most

Fig. 2. Hypothetical relationship between the mean variance of a vegetation
and landscape status (adapted from [117]). The X-axis represents the mean of
a specific VI, while the Y-axis represents the spatial variance. Each quadrant
indicates the status of a landscape.

degraded landscape, with homogeneously lower vegetation
cover. Quadrant 2 (low mean and high variance) suggests a
high proportion of the landscape tending toward bare ground,
which is thus prone to disturbance. Quadrant 3 (high mean and
low variance) implies greater homogeneous vegetation cover,
and Quadrant 4 (high mean and variance) indicates that the
landscape possesses both higher vegetation cover and a higher
spatial variability. Interpretations of the “ideal” quadrant for
a landscape, however, must be performed with caution by
considering the dominant land cover.

MVA manifests the motion or trajectory of vegetation sta-
tus through time. In this study, NDVI patterns were examined
on two temporal scales: annual (averaged value of NDVI from
January to December) and seasonal for fall/winter (October–
March) and spring/summer (April–September).

E. Relative Directional Persistence Metric

The relative directional persistence metric R is one of three
persistence metrics recently developed in [120], and it has
been applied by several scholars for vegetation research [68],
[121]. The metric R is designed to capture the directional
increase/decrease change of NDVI. Essentially, the values of
NDVI are assumed to be normally distributed and serially inde-
pendent under the condition of no disturbances such as LULCC
and climate variability. The assumption of R was carefully
validated and verified by a simple Monte Carlo simulation
(simulated n = 10 000) and extensive empirical observations.
Detailed validation and verification process can be found in
[120, pp. 4478–4483]. Based on the assumption, the statistical
significance levels of R can be set in order to highlight areas
that are marked by unexpected changes.
R makes comparisons relative to the observation in the pre-

ceding year. For instance, an observation from June 1983 is
compared to one from June 1982 and thus reveals sequential
cumulative directional change

Rj =
∑n

i=2
ti,j (1)

Vi,j < Vi+1,j : ti,j = +1 (2)

Vi,j > Vi+1,j : ti,j = −1 (3)
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Fig. 3. NDVI and climate variables are shown for the period from 1982 to
2012 (sunshine duration data period from 1984 to 2012). The linear regression
line (solid line) with its 95% confidence intervals (dashed line) is shown with
regression equations and R squared. (a) Annual mean NDVI. (b) Annual pre-
cipitation (mm). (c) Annual mean temperature. (d) Annual mean cloud amount
(%). (e) Annual mean sunshine duration (h).

where Vi, j is the monthly value of NDVI, in year i, month j.
A value of +1 is assigned if a pixel records a value of NDVI
greater than that in the preceding year, and −1 is assigned if it
is less. After summing all the assigned new values, the resulting
R reflects the sequential cumulative relative directional change
of NDVI.

III. RESULTS

A. Interannual Variations in NDVI and Climate Variables

The variations of annual mean NDVI of Taiwan and corre-
sponding climate variables, including precipitation, tempera-
ture, cloud amount, and sunshine duration, are shown in Fig. 3.
Overall, NDVI, precipitation, and sunshine duration increase
slightly from 1982 to 2012, while the temperature and cloud
amount show a tendency to decrease; however, neither NDVI
nor any climate variables reveal a statistically linear significant
trend (0.05 level) (Fig. 3).

Fig. 4. Mean and variance for annual averaged NDVI throughout Taiwan.

Fig. 5. Mean and variance for spring/summer (March–August) averaged
NDVI.

B. Mean-Variance Analysis

The annual NDVI shows a slight increase from the 1980s
to 2000s, while the spatial variance peaks during the 1990s
(Fig. 4). The low mean and low variance of the NDVI value in
the early 1980s indicates a relatively homogeneous landscape
with lower amount of vegetation cover. The increase in both
the mean and spatial variance values after 1985, however, rep-
resents an increasing spatial heterogeneity and higher amount
of vegetation. The values revert to a lower mean and vari-
ance during the early 1990s (1992–1994), although a noticeable
rise in both mean and variance after 1994 reflects significant
growth rates and high variability across the landscape. The
dominant pattern of vegetation cover in the 1990s, however, is
one of the relatively high spatial variance with a mean value
increasing in the later years. High mean values are maintained
in the 2000s (NDVI mean=0.69), while the spatial variance
is generally lower than the long-term average. Similar pat-
terns can be found in both spring/summer and fall/winter data
(Figs. 5 and 6).
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Fig. 6. Mean and variance for fall/winter (September–February) averaged
NDVI.

Fig. 7. Scores of relative directional persistence metric R for January–
December, 1982–2012. Positive values are shown in green gradient, negative
values are shown in red gradient, and the zero value is shown in white.
Statistically significant (0.05 level) pixels are circled in blue (positive) and red
(negative).

C. Relative Directional Persistence Metric

The result of the relative directional persistence metric in
Fig. 7 shows pixels with positive scores (R > 0), negative
scores (R < 0), and zero score (R = 0). Hereafter, pixels with
positive scores will be assumed to have an increasing pattern
of NDVI during the study period from 1982 to 2012. Likewise,
pixels with negative scores will be considered to have a decreas-
ing pattern of NDVI. Pixels with zero scores will be presumed
to have no discernible change in NDVI over the study era.
However, it is necessary for the limitations of R to be men-
tioned and interpreted with caution. Based on (1)–(3), R can
capture the direction of change; however, R is not sensitive to
the magnitude of change. For instance, the differences between
large and small magnitudes of positive change would not reflect
on the value of R, but instead yield the same value. As such, the
results of R values need to be interpreted with caution.

Fig. 8. Monthly relative persistence directional metric R for Taiwan with
relevant 1982–2012 averaged cumulative precipitation.

In addition, a wide range of established trend estimation
methods involves regression and breakpoints analysis such as
Annual Aggregated Time Series (AAT), Season-Trend Model
(STM), Mean Annual Cycle (MAC), and Singular Spectrum
Analysis (SSA). Forkel et al. [122] argued that interannual vari-
ability would influence the accuracy of NDVI trend change
detection. Subsequently, such trend estimation methods need
to be improved against interannual variability to more accu-
rately quantify the changing trends in ecosystem productivity.
Nevertheless, according to the detailed theoretical developing
process in [120], R mainly focuses on detecting the directional
change of NDVI time series without involving any estima-
tion methods like regression analysis or breakpoints analysis.
Therefore, R is not constrained by statistical assumptions such
as the independence of observations that make R different from
regression and breakpoints analysis.

Generally, positive scores seem to dominate the entire island
from January to June, the first half of the year, while negative
scores dominate from July to December, the second half of the
year. Other than this general pattern, however, monthly spatial
variations, such as June and November, stand out as the distinct
positive and negative patterns of NDVI (Fig. 7). In June, 55% of
pixels return positive R scores, indicating an increasing pattern
of NDVI, whereas 63% of pixels yield negative R scores in
November, representing a decreasing pattern of NDVI (Fig. 8).

Figs. 8 and 9 show monthly variations results of R. For
Taiwan, an average of 23% of pixels show zero scores, whereas
40% of pixels return positive scores and 37% of pixels return
negative scores. As stated above, the first half of the year
is dominated by an increasing trend of NDVI, whereas a
decreasing trend takes over in the second half of the year
(Fig. 8). The northern counties [Fig. 9(a)] largely return pos-
itive scores, especially in June, when 72% of pixels show
positive scores, whereas late summer (July and August) and
winter (November to January) return more negative scores.
Central counties [Fig. 9(b)] exhibit more pronounced nega-
tive scores during the winter months (November–January) and
late summer (July–September). Similar negative patterns in
the winter months can also be seen in the southern and east-
ern counties [Fig. 9(c) and (d)], particularly for the eastern
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Fig. 9. Monthly pixel percentage of relative directional persistence metric R
with averaged cumulative precipitation. (a) Northern counties. (b) Central coun-
ties. (c) Southern counties. (d) Eastern counties. Positive value pixels are shown
in green, negative value pixels are shown in red, and zero value pixels are shown
in gray.

counties [Fig. 9(d)], where more than 80% of pixels return neg-
ative scores in November. Table I and Fig. 10 summarize the
seasonal results of R. Increasing pattern dominate the spring
months (March–May) throughout Taiwan [Fig. 10(a)]. From
June to August (summer time), the northern and southern coun-
ties exhibit an increasing pattern while the central and eastern
counties show a decreasing pattern [Fig. 10(b)]. Other than
the northern counties, Taiwan illustrates a prevalent decreasing
pattern from September to November [Fig. 10(c)]. During the
winter months (December–February), with the exception of the
eastern counties, the entire island displays a decreasing pattern
[Fig. 10(d)].

Among the 20% of pixels with zero score and 80% of pix-
els with a nonzero score, the percentage of negative scores is
particularly high in the southern (51%) and eastern counties
(54%). Additionally, Fig. 11 summarizes the results by region
and reflects the major disturbance events in Fig. 3. Further
regional variation of monthly R can be found in Figs. 12–16.

Table II lists the critical values of R. In this study, 31 years
of observation yield 30 transitions; thus, a significance level can
be chosen to highlight pixels that experienced unusual changes.
A detailed description of the process in establishing the rel-
evant statistical theory can be found in [120]. The circles in
Fig. 7 identify pixels returning statistically significant scores
(p = 0.05). Overall, the significantly negative pixels outnum-
bered positive ones. June is the month with the highest number
of significantly positive pixels, and March comes in the sec-
ond place. The largest amount of significantly negative pixels
appears in November, with July coming in second. From a
spatial perspective, significantly positive pixels appear in the
central and southern counties during the early months and reach
their peak in March in the central counties. In June, signifi-
cantly positive pixels move to the northern counties and become
less present for the remainder of the year. Significantly negative
pixels concentrate in the northern counties in January and move
to the central and southern counties subsequently. Especially in

TABLE I
SEASONAL RELATIVE PERSISTENCE DIRECTIONAL METRIC R

July, the central counties were dominated by significantly nega-
tive pixels and an overwhelmingly negative pattern was evident
in the central and eastern counties in November.

D. Pearson’s Product Moment Coefficient

Fig. 17 presents Pearson’s product correlation coefficients
between NDVI and four climate variables, including sunshine
duration, temperature, precipitation, and cloud amount at a
monthly scale suggested by many scholars [63], [71], [123]–
[124]. The results show a general positive correlation between
NDVI and sunshine duration and temperature, and a general
negative correlation between NDVI and precipitation and cloud
amount.

An overall positive correlation is observed between sun-
shine duration and NDVI, which indicates that long sunshine
hours benefit the growth of vegetation and yields high NDVI.
Statistically, sunshine duration is strongly positively corre-
lated with NDVI in August (r = 0.59, p < 0.001), and the
remaining months of April, July, September, and October
also display a significant positive correlation (r > 0.40, p <
0.05). For temperature, a moderate to high significant posi-
tive correlation was found during March and August in Taiwan
(r = 0.47 and 0.37, respectively, p < 0.05). A nonsignificant
positive correlation was obtained for other months, and only
September and October exhibited a weak negative relationship
between temperature and NDVI.
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Fig. 10. Seasonal relative persistence directional metric R. Green (red) arrow
represents more positive (negative) score pixels within the particular season and
area.

The most surprising result is the general negative relationship
between precipitation and NDVI. A strong negative correla-
tion was found between precipitation and NDVI in May (r =
−0.59, p < 0.001), February, and August (r < −0.40, p <
0.05). With the exception of September and December, which
show an insignificant positive correlation, all months reveal a
negative correlation. Cloud amount shows a consistent negative
correlation with NDVI. The negative correlation is particu-
larly strong and statistically significant (r < −0.57, p < 0.001)
in June and August. April, July, September, and October
display weak to moderate negative correlations (but not sta-
tistically significant) whereas other months reveal signifi-
cant negative correlation coefficients ranging from −0.35 to
−0.55 (p < 0.05).

IV. DISCUSSION

A. Interannual Variations in NDVI and Climate Variables

A slight increasing NDVI tendency over the study period
(1982–2012) can be attributed to the overall forest protection
policy in Taiwan. In 1976, the principles for the management of
national forest in Taiwan have shifted from timber production to
forest protection under the consideration of conservation, sus-
tained yield, and public welfare. By 1990, 99% of the timber
supply in Taiwan was imported [125]. Nowadays, the amount of

Fig. 11. Summary of the relative persistence directional metric R. Green (red)
indicates the prevalence of positive (negative) pixels, while gray represents a
balance between positive and negative pixels.

logging and forest clearing activities in Taiwan were regulated
by law and restricted to certain forest plantation area.

Along with the slightly increasing NDVI over the study
period, several fluctuations exist in the timeline [Fig. 3(a)] and
several low NDVIs are probably associated with natural distur-
bances that occurred in Taiwan. For instance, the lowest NDVI
recorded in 1984 may link to the flood that occurred in the Mei-
Yu season (June) caused by frontal system-related convective
activity. This event dropped a maximum of 400 mm of rain
within 6 h on northern Taiwan and resulted in serious prop-
erty and agricultural losses. Additionally, Taiwan is affected by
an average of four tropical cyclones per year [126] and many
major typhoons have struck Taiwan with devastating damage.
These typhoons’ impacts were revealed by a decreased NDVI
value for the concurrent and even the following years depend-
ing on the location-specified vegetation recovery rate [83]. For
example, typhoon Herb in July 1996 made landfall as a category
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Fig. 12. Monthly relative persistence directional metric R by year (the upper
bound years are listed) for the northern counties in Taiwan. Green (red) indi-
cates that the positive (negative) value pixels outnumber negative (positive)
ones, and gray indicates no differences between the number of positive and
negative pixels.

3 typhoon, brought almost 2000 mm of rainfall within 48 h,
and resulted in 1315 landslides and 20 debris flows [81]. With
typhoon Herb, the heaviest damage occurred in central Taiwan
[79], and the negative impact can be observed from the decline
in the 1996–1997 NDVI values [Fig. 3(a)]. On August 7, 2009,
typhoon Morakot struck Taiwan with record-breaking rainfall
of over 2800 mm in 100 h, and triggered 22 705 landslides [84],
[100]. Over 400 km2 of land were flooded by the enormous
rainfall brought by typhoon Morakot and the effect of rainfall-
induced landslides was reflected in the declining NDVI values
from 2009 onward. Conversely, 1989 and 1995 reveal relatively
high NDVI values without natural disturbances.

Other natural disturbances, such as floods, rainfall-induced
landslides, and debris flows, are usually directly influenced by
abundant precipitation from tropical cyclones and storms in
summer and autumn [127]. Those natural disturbances not only
bring severe hazards and threats to human lives and property,
but also characterize the structure, function, and dynamics of
many tropical and temperate forest ecosystems [79]. As a con-
sequence, the NDVI value can be greatly influenced by natural
disturbances.

Moreover, previous studies have shown that rainfall and
earthquakes are two main mechanisms that trigger landslides
[128]–[130]. In 1999, the Chi-Chi earthquake with a magnitude

Fig. 13. Monthly relative persistence directional metric R by year (the upper
bound years are listed) for the central counties in Taiwan. Green (red) indi-
cates that the positive (negative) value pixels outnumber negative (positive)
ones, and gray indicates no differences between the number of positive and
negative pixels.

of 7.3 on the Richter scale struck Taiwan on September 21.
The Chi-Chi earthquake resulted in more than 20 000 sites
with a total of 160 km2 of landslides. The devastating dam-
ages to the central Taiwan brought by the Chi-Chi earthquake
were possibly associated with the declining NDVI from 1998
to 1999 and even in the following year 2000 [83]. Besides the
direct influence from an earthquake, a catastrophic earthquake
can intensively disturb ground strata and affect the stability of
slopes for a long period [83]. As a consequence, the subse-
quent rainfall-induced landslides were more likely to increase
its density and affected areas [83], [131]. A typical example is
the typhoon Toraji in 2001. Typhoon Toraji brought less rainfall
than typhoon Herb in 1996, but affected larger area and resulted
in the declined NDVI from 2001 onward, because the Chi-Chi
earthquake extensively disturbed the surface strata.

Two historically severe droughts were recorded during 1993–
1995 and 2002–2004 and were linked closely to precipitation
[132]. The prolonged nine-month drought in 1993 was asso-
ciated with a water shortage caused by the lack of typhoons
in the previous year. The drought in 2002–2004 was closely
associated with low annual precipitation, 28% less than the
long-term average annual precipitation [Fig. 3(b)], and reflected
on the low value of NDVI [Fig. 3(a)] [132]. Accompanied
with high temperatures, low cloud amount, and long sunshine
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Fig. 14. Monthly relative persistence directional metric R by year (the upper
bound years are listed) for the southern counties in Taiwan. Green (red) indi-
cates that the positive (negative) value pixels outnumber negative (positive)
ones, and gray indicates no differences between the number of positive and
negative pixels.

duration [Fig. 3(c)–(e)], the years of 2002–2004 were listed
as the severest drought years on record in Taiwan in three
decades [132].

Furthermore, lower NDVI values found in the early 1980s
and 1990s may be connected with the global impact of volcanic
eruptions. Volcanic eruptions can enhance the haze effect and
lower mean global temperatures by injecting a large amount of
suspended ash particles into the upper atmosphere. The large
amount of injected suspended ash particles block out solar
radiation and result in the reduction of the amount of sun-
light reaching the Earth’s surface, thus decreasing temperatures
globally [133], [134]. The cooling effect from the reduction
of sunlight may influence vegetation growth, which may neg-
atively impact NDVI for several years [135]–[137]. In this
study, the cooling effect of the 1982 El Chichon eruption and
1991 Mount Pinatubo eruption can be seen in 1982–1984 and
1992–1994 from the lower NDVI value, lower temperature,
lower sunshine duration, and higher cloud amount [136], [138]
[Fig. 3(b)–(e)].

High precipitation records found in the years 1990, 1998,
and 2005 [Fig. 3(b)] were coincident with the findings from
[139]. Decreasing trends in sunshine duration in major urban
centers were found in [140] from 1898 to 1999; they argued
that the trends are most likely caused by an increase in

Fig. 15. Monthly relative persistence directional metric R by year (the upper
bound years are listed) for the eastern counties in Taiwan. Green (red) indi-
cates that the positive (negative) value pixels outnumber negative (positive)
ones, and gray indicates no differences between the number of positive and
negative pixels.

regional clouds and/or cloud albedo as a result of increased
anthropogenic aerosols. However, a declining trend of cloud
amount [Fig. 3(d)] and a slightly increasing trend of sunshine
duration [Fig. 3(e)] are found in this research. The discrepancy
between this study and [140] may result from the different tem-
poral data coverage and this study may reflect a fluctuation or a
changing point in the long-term pattern found in [140].

Based on the Intergovernmental Panel on Climate Change
(IPCC) reports [141], [142], other than the medium confidence
(50%) in a warming trend in daily temperature extremes in
much of Asia, it is likely (66%–90%) that the frequency of
heavy precipitation, namely, the proportion of total rainfall
from heavy rainfalls associated with tropical cyclones, will
increase in the 21st century over many areas of the globe.
According to [143], the annual average temperature of Taiwan
has increased approximately 1.4 ◦C from 1911 to 2009, and
the rate of increase is two times faster than global average
for the last three decades (1980–2009). Although no signifi-
cant trend is observed in annual precipitation, an island-wide
decrease in precipitation days has been detected on the order
of −6 days/decade since the 1980s [143]. Additionally, ref-
erence [144] found an upward trend in heavy precipitation
(> 10 mm/h) from 1961 to 2005 in Taiwan, while reference
[145] suggested that the upward trend is likely associated with
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Fig. 16. Relative directional metric R for Taiwan by year (the upper bound
years are listed). Green (red) color represents outnumbered positive (negative)
pixels.

Fig. 17. Pearson product moment correlation coefficients for NDVI with
climate variables.

climate change. Moreover, the seasonal typhoon counts in the
vicinity of Taiwan have been increasing abruptly since 2000
[146], and the precipitation intensity induced by both typhoons
and monsoon systems has increased over the last 60 years
[147], [148]; these mechanisms collectively contribute to the
upward trend in precipitation intensity. Climate extremes, such
as heat waves, extreme precipitation, drought, the intensity of
tropical cyclones, and rising sea levels have been observed

TABLE II
CRITICAL SCORES OF THE RELATIVE DIRECTIONAL

PERSISTENCE METRIC R

The number of observed transitions n = 30 is equal to the total record length
of 31 years (1982–2012) minus 1.

worldwide due to their devastating consequences on society
and economy [148]. Given the rising temperature, increasing
number of typhoons, and intensified typhoon-induced precip-
itation, Taiwan is facing growing challenges of the influences
from global climate change and climate extremes on agricul-
ture, conservation, water resources, socioeconomic activity, and
food security.

B. Mean-Variance Analysis

The slightly increasing NDVI mean value from the 1980s
to the 2000s found here agrees with the results of [23] and
[149]. Additionally, the highest variance values appearing dur-
ing the 1990s may imply a higher degree of natural fluctuation
in the landscape. Based on more than 100 years of annual
cumulative precipitation data (1911–2009) and the base line
year’s average precipitation (1980–1999), reference [132] noted
that the fluctuation (above and below average) occurred three
times in the last 50 years (1960–2009); however, the fluctua-
tion became more frequent after the late 1980s, occurring three
times within 15 years (1985–2000). After 2000, the average
precipitation is observed with less frequent fluctuations. Due to
the close relationship between precipitation and NDVI [1], [23],
[55], [75], it is reasonable to infer that the fluctuation of the
annual cumulative precipitation has the potential to influence
the NDVI variance values observed in Taiwan. In the context
of global climate change, precipitation patterns are expected to
be more variable. Thus, the associated vegetation dynamics and
ecosystems functions would pose serious challenges, such as
agricultural and conservational management, for policy makers
and stakeholders in Taiwan.

C. Relative Directional Persistence Metric

A possible interpretation of the increasing pattern of NDVI
for the first half of the year may lie in the increasing observed
precipitation [96], [150], and the decreasing pattern of NDVI
may be associated with typhoon-related disturbances such
as abundant rainfall, landslides, and debris flows during the
typhoon season (July–September). Although further investiga-
tion is needed, the decreasing pattern during the winter months
and the distinct declining pattern in November may be related
to large-scale atmospheric circulations such as the ENSO or the
pacific decadal oscillation (PDO) [77], [151], [152].

In Fig. 11, the negative impact from the Mei-Yu induced
flood (June) was associated with the low NDVI value in 1984
and results in the outnumbered negative pixels. In addition,
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typhoon-related disturbances such as rainfall-induced land-
slides and debris flows are speculated to influence the NDVI
value negatively. Evidence can be seen in the year and even
the following year of major typhoon event such as in 1996
(typhoon Herb) and in 2009 (typhoon Morakot). Moreover,
the Chi-Chi earthquake with subsequent landslides intensively
disturbed the landscape results in the low NDVI value in
1999–2000. Furthermore, the adverse effects of drought (1992–
1994 and 2002–2004) and volcanic eruptions (1982–1984 and
1992–1994) to NDVI contribute to unfavorable conditions for
vegetation growth. Overall, for the entire island throughout the
31-year study period (1982–2012), 18 years return more nega-
tive scores indicating a prevalent decreasing NDVI pattern over
these three decades. The northern counties show an approxi-
mately balanced situation (14 negative years with 15 positive
years and one zero year), and negative patterns are prevalent
among other regions.

Although the total number of significant pixels (negative and
positive) account for a small proportion (1%–2%) of the whole,
it is noteworthy that the number of positive pixels exceeds that
of the negative pixels from January to June, whereas the situ-
ation is reversed from July to December. Indeed, these results
declare that Taiwan has two distinct patterns of NDVI: 1) an
increasing pattern in the first half of the year and 2) a decreas-
ing pattern in the second half of the year, suggesting a more
enhanced seasonal variation. This enhanced seasonal variation
also corresponds to the original R results (Figs. 7 and 8) and
the observational evidence [132], [153].

Nevertheless, these significant pixels are not showing clear
groupings (except November), which suggest that localized
phenomena may play an important role on these unexpected
changes. This situation also reflects the terrain characteristics of
Taiwan, resulting in a high level of local vegetation variations.
Thus, more local or downscaled remote sensing information are
needed to further investigate the underlying phenomena.

Many studies focusing on precipitation patterns support the
regional results of R. The increasing NDVI pattern discovered
in the northern counties coincides with the findings of [132]
as an observed statistically significant increase in precipita-
tion in the Taipei weather station, located in the northern part
of Taiwan (25◦2′ 23′N, 121◦30′ 24′E), from 1911 to 2009.
In addition, reference [96] also discerned an increasing pre-
cipitation trend of 3–4 mm/year in northeastern Taiwan from
1897 to 1999 and this upward pattern was confirmed again in
[102] and [154]. Furthermore, due to the positive correlation
between the PDO and spring rainfall in northern Taiwan, the
positive PDO signal from 1977 through the mid-1990 s resulted
in more spring rain in northern Taiwan, which is reflected in the
increasing pattern of NDVI [151].

The decreasing NDVI pattern exhibited in the central and
southern counties seems to be at odds with previous research
results [96], [102], which show a declining precipitation ten-
dency in central and southern Taiwan. Additionally, a rational
explanation for the observed decreasing NDVI pattern may link
closely to the observed declining annual number of precipita-
tion days [96], [132], [154]. Reference [132] found a general
declining trend in precipitation days from 1911 to 2009, where
the trend was statistically significant in the southern and eastern

stations for the last 30 years. Moreover, because no sufficient
statistical evidence discerns a long-term annual precipitation
trend [132], the general decreasing trend in precipitation days
implies that the precipitation intensity may have increased in
compensation for the decreased rainy days [96], [132], [144].
As such, the impact of intensified precipitation may be associ-
ated with the decreasing NDVI pattern. According to the limited
space and the scope of this study, the impacts of intensified
precipitation will not be discussed.

Given that the water supply is critical for plant growth,
precipitation usually shows a considerable positive correla-
tion with NDVI values [6], [10], [16], [19], [51], [61], [73],
[155]. Other than the natural disturbances resulting in nega-
tively impact on NDVI values, such as floods, landslides, or
debris flows triggered by excessive precipitation, some scholars
argued that there is a location-dependent negative correlation
between NDVI and precipitation. Reference [60] reported a
negative correlation of NDVI and precipitation in northeast
China based on the hypothesis that precipitation causes more
clouds to appear and then reduces the incident radiation, thus
hindering photosynthesis. In addition, reference [149] reported
that increasing rainfall could also shorten the growing season
and reduce the incoming solar radiation, thus decreasing NDVI
in rainy regions. Moreover, heavy rainfall accompanied by a
surplus of surface runoff could carry the seeds of former early
summer species away or induce them to root or even germinate
prematurely [156]. This could result in seed loss or poor/late
filling of seeds, thus indirectly affecting the seed bank and
eventually influencing the NDVI value [157]. However, the cor-
relation may be location dependent [158]; thus, in order to
investigate the correlation between NDVI, precipitation, and
other climate variables, including temperature, cloud amount,
and sunshine duration, Pearson’s product correlation coefficient
analysis is carried out.

D. Pearson’s Product Moment Coefficient

An overall positive correlation has been observed between
NDVI and sunshine duration and temperature, whereas pre-
cipitation and cloud amount are negatively correlated with
NDVI. Given the observed increasing (decreasing) precipita-
tion pattern for the northern (southern and eastern) counties
[96], [102], [132], these correlation results are especially impor-
tant because they provide an opportunity to infer their rela-
tionship and thereby forecast their occurrence and impacts
under changing climate conditions [159]. According to the
recently released IPCC AR5 downscaled model projections
[132], approximately half of the models predict decreasing win-
ter precipitation (−3% to −22%) in Taiwan. Additionally, more
than 75% of the models predict increasing summer precipi-
tation (+2% to +26%) in Taiwan. These model projections
indicate an increasing range between wet and dry season pre-
cipitations, which is also supported by a global scaled research
conducted in [160]. Moreover, the increased range between wet
and dry season precipitations is evident in the increasing occur-
rences of extreme dry spells during the winter months [161]
and extreme heavy precipitation during the summer months
in Taiwan [153]. Together with the results from the relative
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directional persistence metric R, this enhanced seasonal varia-
tion is confirmed again. Hence, the enhanced seasonal variation
is especially vital for Taiwan as it may intensify the posi-
tive and negative NDVI patterns and pose extra pressure in
various aspects, such as rain-fed agricultural practices, conser-
vation practices, water resource management, socioeconomic
activities, and food security in Taiwan.

V. CONCLUSION

This study demonstrates a novel approach that combines
temporal and spatial analysis employing a remotely sensed
VI time series. Specifically, MVA and relative directional
persistence analysis are applied to 31 years (1982–2012) of
monthly AVHRR-derived NDVI in Taiwan. The statistical test
along with the relative directional persistence metric permits
the identification of changes that are different from what
might be expected at random. Moreover, a set of climate
variables, namely, precipitation, temperature, sunshine dura-
tion, and cloud amount, are analyzed using Pearson’s product
moment correlation analysis to assess the relationship between
NDVI and climate variables. Three research questions and their
corresponding findings are described in the following.

What is the overall long-term NDVI pattern in Taiwan
between 1982 and 2012? The results from MVA provide insight
into the long-term NDVI pattern by analyzing the tempo-
ral changes from the value of mean and variance. The mean
value of NDVI increases slightly from the 1980s to the 2000s,
and the variance values are relatively higher during the 1990s
and lower during the 2000s. Similar patterns are found in
the annual, spring/summer (March–August), and fall/winter
(September–February) data, indicating common NDVI dynam-
ics. The increasing mean and fluctuating variance may be
associated with the observed precipitation variation and natural
disturbances [78], [81], [83], [100], [126], [127], [131]–[133],
[136], [138], [162]–[164].

How is the spatial pattern of monthly NDVI varied in
Taiwan? The relative directional persistence metric R provides
a new perspective by allowing comparisons to observations
from the preceding year in order to capture the directional
increase or decrease in NDVI. From the monthly results of
R, it is clear that there are two distinct NDVI patterns: 1) an
increasing pattern for the first half of the year and 2) a decreas-
ing NDVI pattern for the second half of the year. Additionally,
June and November stand out as their distinct positive and
negative patterns may correspond to the observed enhanced sea-
sonal variation [132], [153]. Moreover, decreasing patterns of
NDVI with regional variations have been discerned in 18 of
the 31 study years. The northern counties exhibit an increasing
NDVI pattern, whereas the central and southern counties expe-
rience a decreasing trend. The two distinct patterns of NDVI are
emphasized again by the statistically significant test as positive
statistically significant pixels outnumbered negative ones from
January to June, with the situation being reversed from July to
December.

What is the relationship between NDVI and climate vari-
ables, such as precipitation and temperature? Pearson’s

product moment coefficient analysis was carried out to assess
the relationship between NDVI and a set of climate vari-
ables, namely, precipitation, temperature, sunshine duration,
and cloud amount. The overall results show that sunshine
duration and temperature are positively correlated with NDVI,
whereas precipitation and cloud amount are negatively corre-
lated with NDVI. Monthly variations can be seen from their
statistical significance levels. Almost all months show a sta-
tistically significant positive correlation between NDVI and
sunshine duration, whereas temperature displays a significant
positive correlation in March and August. Statistically signifi-
cant negative correlations are found between precipitation and
NDVI in February, May, and August, whereas cloud amount
expresses a significant negative relationship with NDVI in
almost all months. In the context of global environmental
change, this correlation analysis highlights the importance of
each climate variable’s contribution to NDVI and indicates an
accurate direction for future climate predictions.

The regional variation of the NDVI pattern derived from the
relative directional persistence metric R corresponds well with
the observed precipitation pattern, indicating a close relation-
ship between NDVI and precipitation. Precipitation variability
alone, however, does not provide a complete picture of NDVI
drivers in Taiwan. Other factors, such as the ratio of vegetation
productivity to annual precipitation [rain use efficiency (RUE)],
soil type, soil moisture, and rainfall-induced natural disasters
including landslides, debris flow, and floods, all play important
roles in NDVI. Additionally, the societal demands of an increas-
ing population and the associated economic development may
lead to various LULCC through urbanization, agriculture, and
industrial activity at different spatial and temporal scales. Thus,
the identified significant pixels from the relative directional
persistence metric R may convey important messages concern-
ing localized LULCC or reflect the influence from large-scale
atmospheric phenomena such as ENSO and PDO [75].

This study illuminates the long-term spatial and temporal
NDVI patterns from 1982 to 2012 for Taiwan. The observed
marked regional variations indicate that Taiwan’s diverse
ecosystem may correspond to abiotic–biotic factors at different
temporal and spatial scales. A better understanding of Taiwan’s
long-term vegetation dynamics may have very important impli-
cations in various aspects such as agricultural practices, conser-
vation practices, water resource management, socioeconomic
activities, and food security. In addition to considering future
climate variability and possible climate change directions, this
study not only sheds light on the long-term patterns of Taiwan’s
vegetation dynamics, but also provides valuable information
that would benefit the establishment of proper mitigation guides
and adaptation strategies for Taiwan.
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