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ABSTRACT ... The functionalities of practical image data handling systems are always computational intensive and are 
limited by the computing performance of the hardware devices, limitation and deficits of the software, and deficiency in 
processing large volume of remote sensing images. This research aims on developing a Tabular K-means clustering 
using Visual C++. The basic idea of traditional K-means approach was refined by deriving a look-up table (LUT) from 
the Voronoi diagram of the automatically detected peaks in the scatter diagram of the first two principal components of 
the images. The performance of numerical experiments in clustering 7-band Landsat thematic mapper (TM) images into 
specified number of spectral clusters is demonstrated for the advantages in computational efficiency of the proposed 
approach against traditional approach in K-means clustering.
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1. INTRODUCTION
In remote sensing image classification, clustering is the 

method of grouping pixels into spectral sets so that pixels 
within the set should have high similarity. Generally, the 
functionalities of practical image data handling systems 
are always computational intensive and are limited by the 
computing performance of the Central Processing Unit 
(CPU), memory allocation, capacity of storage device, 
limitation and deficits of the software, and deficiency in 
process in processing large volume of remote sensing
images. Since there is no theoretical limitation on the 
number of bands (or features), in principle, any of the 
conventional algorithms for classifying multispectral data 
can be directly applied to hyperspectral data. However, 
these algorithms appear suddenly inefficient when 
applied to a hyperspectral image with 200 or more closely 
related spectral bands (Schowenderdt, 1997). The 
increased number of spectral bands results in a vast 
increase in the computational load for statistical analysis 
in order to derive reliable class-specific statistics for 
maximum-likelihood approach. The access to efficient 
hardware and software is an important factor in 
determining the ease with which an unsupervised 
classification can be performed (Lillesand et al., 2015).

Image data clustering in remote sensing is usually 
referred as unsupervised classification based on the 
natural groupings in the image values of spectral 
reflectance. Clustering algorithms can be broadly 
categorized into two groups: hierarchical and partitional
(Jain, 2010). Among the partitional algorithms, K-means
is the most popular one due to its simplicity, efficiency, 
and empirical success in recognizing multivariate data.
There have been many variants of K-means clustering 
since it was discovered in the 1950’s. This research aims 
on developing a Tabular K-means approach using Visual 
C++. The basic idea in traditional K-means approach
(Duda & Hart, 1973) was examined and refined with 
principal component transformation (PCT), peak 
detection and Voronoi diagram in clustering remote 
sensing images into specified number of spectral clusters.

Experiment results from clustering 7-band Landsat 
thematic mapper (TM) images demonstrated the 
advantages in computational efficiency of the proposed 
Tabular K-means approach against traditional method.
2. PRINCIPLES IN K-MEANS CLUSTERING

2.1 Discriminant Functions
Among the algorithms of unsupervised classification,

the notion of similarity between a pixel and clusters is a 
fundamental concept behind these classifiers. The 
measure of similarity between a pixel x to a cluster j
with known class signature in a classifier can be defined 
by choosing one of the following commonly-used 
distance measures (Richards & Jia, 2006; Gonzalez & 
Woods, 2008; Schowengerdt, 1997; Jenson, 2005):
A. Manhattan (City-block) distance:
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B. Euclidean distance, represented in squared norm of 
the difference vector for being monotonic:
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C. Mahalanobis distance, which is a multivariate 

generalization of the Euclidean distance for Gaussian 
normal distribution:
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where, for an L-band image,
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represents the pixel in consideration, and
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represent the mean vector and the covariance matrix 
of a cluster j with jN pixels, respectively.

Clearly, the Manhattan distance is computationally the 
fast with the least accuracy among the three distance 
measures. Though the Mahalanobis distance is the 
slowest in computation, it is the most accurate in 
considering the practical nature of pixel distribution 
within a cluster. For K clusters, the basic problem in 
clustering analysis applying minimum distance classifier 
is then to find K discriminant functions of selected 
distance measure with the property that
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Note that the well-known maximum likelihood classifier
can be degeneralized to the minimum distance classifier
that employs Mahalanobis distance measure on the basis 
of equal prior probabilities (Richards & Jia, 2006).
2.2 The K-means Algorithm

K-means algorithm (Duda & Hart, 1973) is one of the 
most commonly clustering methods (Lillesand et al., 
2015). It comprises the following iterative process for 
clustering multivariate data into groups with similar 
properties:
A. Arbitrarily assign initial mean vector (“seed” or 

“attractor”) for each of the K clusters,
B. Arbitrarily assign initial covariance matrix for each of 

the K clusters if DM is employed,
C. For each pixel in the scene,

C.1 compute the K discriminant functions based on 
selected distance measure, i.e., Eq. (1), (2), or 
(3),

C.2 assign this pixel to a cluster according to Eq. (6),
D. Update the mean vectors of all K clusters according to 

Eq. (4), and update the covariance matrices of all K
clusters according to Eq. (5) if DM is employed,

E. Reset the number of pixels for each cluster to zero, 
and repeat steps C to D until there is no significant 
change in pixel assignments,

F. Output the result of clustering with the cluster 
assignment to all pixels and the spectral signatures, 
i.e., mean vectors and covariance matrices, of all 
clusters.

The common criterion for ending the iterative process 
in step F can be defined in terms of (1) the net mean 
migration ( m ) (Schowengerdt, 1997), i.e., the 

magnitude change of the mean vectors over all K clusters, 
from iteration i to the previous i-1, or (2) the sum of 
squared error (SSE) (Richards & Jia, 2006) for all the 
clusters as the followings:
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As )(im reaches zero or SSE(i) converges to SSE(i-1), 
the iterative procedure is terminated. A threshold of the 
criterion or a maximum number of iteration may be set to 
avoid timely iterative process.

3. THE TABULAR K-MEANS APPROACH
This paper employs techniques in principal component 

transformation (PCT), peak detection on scatter diagram, 
and Voronoi diagram of the selected peaks in preparing a 
look-up table (LUT) for K-means clustering of remote 
sensing multispectral and hyperspectral images. PCT is a 
feature space transformation designed to remove the high 
spectral redundancy in multispectral and hyperspectral 
image bands (Tsai & Tsai, 2013). PCT was applied to use
only the first two principle components (PCs) that contain 
the most variance for spectral clustering. The two-
dimensional (2-D) scatter diagram of the first two PCs,
considering the two-channel pixel values as positional 
coordinates, was computed for selecting the K initial 
seeds by applying 2-D peak detection techniques. Given 
the set of K seeds, the raster-based Voronoi diagram is 
employed to partition the 2-D discrete grids of the scatter 
diagram into K convex Voronoi cells, i.e., clusters, that 
are closer to one seed than to any other seeds. A look-up 
table (LUT) was then generated for the 2-D discrete grid
for fast mapping of each pixel into a cluster assignment.

Therefore, steps A to C of the traditional K-means
algorithm were modified in the proposed Tabular K-
means approach as following:
A. Assign initial mean vector for each of the K clusters:

A.1 Transform the hyperspectral image into principal 
components (PCs) with its eigenvalues in 
descending order (Tsai & Tsai, 2013),

A.2 Compute the 2-D scatter diagram of the first two 
PCs,

A.3 Find the highest K peaks, which are apart from 
each other by s specified distance threshold, from 
the 2-D scatter diagram as initial mean vectors.

B. Compute initial covariance matrix for each of the K
clusters if DM is employed,

C. For the first two PCs,
C.1 Compute the 2-D Voronoi diagram of the K mean 

vectors in the 2-D spectral space,
C.2 Assign each pixel to a cluster by the look-up table 

using its digital values of the two PCs as indices.



In this case, the initial K seeds are much closer to the
centroids of actual groups of pixels with similar 
spectral characteristics than those arbitrarily assigned. 
As a result, the iterative clustering may converge fast 
in a limited number of iteration.

4. EXPERIMENTAL RESULTS
The programs were developed using Microsoft Visual 

Studio 2012 C++ under Microsoft Windows 7 Enterprise
64-bit environment in an ASUS U36J series Notebook
with Intel CoreTM i5-M460 CPU @2.53GHz and 4GB 
RAM. The C++ codes were developed as Win32 Console 
applications for both traditional K-means approach and 
the proposed Tabular K-means approach for comparison 
of the computational performance in terms of convergent 
and run-time efficiency.

As shown in Fig. 1(a), a 7-band, 256 256, 8-bit
Landsat TM image of Taichung area in Taiwan was used 
in the experiment. The Landsat TM image was 
transformed into PCs with the first two PCs (PC-1 and 
PC-2) shown in Fig. 1(b) and 1(c). The results of PCT on 
the experiment images show that PC-1 and PC-2 together
contain 95.96% (66.45% + 29.51%) of the spectral 
variance of the original 7-band images. Thus, only PC-1
and PC-2 were used in computing the scatter diagram 
from which the desired number of separate peaks of local 
maximum were automatically detected and whose 
coordinates (pixel values) were used as the initial seeds. 
A 256 256 raster Voronoi diagram of these seeds, for 
each iteration, was then generated for use as the LUT that 
actually claims the grouping region of each seed in the 
spectral intensity space. Fig. 2 illustrate the transition of 
the Voronoi diagram through iterations in the proposed 
approach with 20 initial seeds, whose means and standard 
deviations were updated accordingly. Fig. 3 shows the 
cluster map of both approaches with 20 seeds.

The performances of the proposed Tabular K-means
and the traditional K-means are shown in Tables 1. It
demonstrates that (1) the SSE decreases and the runtime 
per iteration grows as the number of seeds grows for both 
approaches, and (2) the proposed Tabular K-mean
approach dominate traditional K-mean approach in 
efficiency in terms of runtime, both total and per iteration.

5. CONCLUSIONS
This research adapts Visual C++ in designing 

programs for unsupervised K-means clustering analysis,
and compares the computational efficiency. We focused 
on the developing a Tabular K-means algorithm with 
minimum distance classifier. A 7-band Landsat TM 
image were used in the experiments for illustrating that 
the proposed Tabular K-means approach dominates the 
traditional approach through the use of LUT from 
employing Voronoi diagram of the seeds. It is anticipated
that parallelism of basic operations in the proposed 
Tabular K-means on multi-core multi-thread CPUs and 
GPUs for high performance processing of volumetric 
image data in remote sensing applications.
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(a) Colour infrared composite (b) PC-1 (66.45%) (c) PC-2 (29.51%)
Fig. 1. Landsat TM images (8-bit, 256 256 in size) and its principal components used in the experiment.



(a) iteration 1 (initial) (b) iteration 7 (c) iteration 14

(d) iteration 20 (e) iteration 27 (f) iteration 33 (final)
Fig. 2. Transition of the Voronoi diagrams of 20 seeds (black dots) for the Landsat TM images.

(a) Tabular K-means (b) Traditional K-means
Fig. 3. Cluster maps of 20 seeds from the Landsat TM images.

Table 1. Performance of the proposed Tabular K-means and the traditional K-means
Method Tabular K-means Traditional K-means

K #iteration SSE runtime (msec) runtime / iteration #iteration SSE runtime (msec) runtime / iteration
5 25 25184350.16 314.197 12.568 50 17979600.92 2016.660 40.333

10 53 11404443.93 741.676 13.994 55 9719515.63 3556.816 64.669
15 60 7629334.88 1027.845 17.131 111 7766599.72 9866.895 88.891
20 33 5776961.06 706.096 21.397 124 6402920.79 14041.155 113.235
25 34 4894041.88 837.767 24.640 425 5575943.36 57752.073 135.887
30 22 4208016.73 649.435 29.520 175 5075002.08 27961.862 159.782
35 20 3708905.17 660.882 33.044 198 4674793.70 36143.634 182.544
40 31 3248283.50 1074.310 34.655 134 4376743.73 27647.488 206.324
45 51 2919433.75 1865.670 36.582 212 4115886.28 49059.936 231.415
50 30 2651855.30 1223.050 40.768 183 3990616.01 46473.340 253.953


