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Abstract

The methods of developing an accurate and effective ionospheric electron density (IED) model have greatly interested ionosphere
researchers. Numerous scholars have proposed many effective and reliable models and methods of global positioning system (GPS)-
based computerized ionospheric tomography (CIT) in the past decades. This study introduced a new function-based CIT method,
namely the LS-MARS (Least Squares method-Multivariate Adaptive Regression Splines), combining MARS with IEDs calculated by
International Reference Ionosphere (IRI) to automatically choose the best representing basis functions for the three-dimensional
(3D) electron density inside that modeling area. This selected basis functions was substituted into the observation equation of the
GPS total electron content (TEC) to calculate the design matrix. Finally, the weighted damped least squares (WDLS) were adopted
to reestimate the IED model coefficients. In contrast to common function-based CIT methods, the LS-MARS can be used to attain opti-
mal 3D model automatically, flexibly, adaptively based on the IRI without a priori knowledge of the IED distribution mathematical
function. The findings indicated that the LS-MARS model had a smaller recovery TEC error than did the MARS_IRI2012 model,
and the VTEC calculated using the LS-MARS model was closer to the VTEC obtained from International GNSS Service (IGS) final
IONEX files than was the VTEC calculated using the MARS_IRI2012 and IRI2012. Therefore, this method exhibits strong modeling
effectiveness and reliability, and can be an efficient alternative method for estimating regional 3D IED models.
� 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The ionosphere is a part of the Earth’s upper
atmosphere where the free electron density is high enough
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to disturb the transmission of electromagnetic waves. In
the absence of selective availability (SA), the ionosphere
can be the largest source of error in GPS navigation and
positioning. Ionospheric delay decreases the accuracy of
navigation and positioning systems, causing inaccuracies
ranging from several to dozens of meters. During severe
ionospheric storms, these inaccuracies can exceed hundreds
of meters. The keypoint in correcting electromagnetic mea-
surements for ionospheric disturbances is the knowledge of
the electron density. The precise ionospheric electron
density model is also applicable to space weather studies
and geoscience. In recent years the GPS, have become a
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promising tool and been widely used to monitor electron
distribution within the ionosphere. Because the scientists
can use dual-frequency GPS observations to estimate the
total electron content (TEC) and the electron density in
the ionosphere. Moreover, the GPS satellites, being in high
altitude orbits, are very useful for studying the structure of
the entire ionosphere, and GPS is a low-cost, all-weather,
near real time and high-resolution atmospheric sounding
technique.

Computerized ionospheric tomography (CIT) tech-
nology uses radio wave signals emitted by satellites to
invert IED models. The concept of CIT was first intro-
duced to the fields of ionosphere by Austen et al. (1986).
At that time, the experiments involved using multiple
ground stations in the Naval Navigation Satellite System
to detect the TEC during radio wave transmissions; subse-
quently, tomography was used to invert the TEC to pro-
duce 2D IED distributions (Austen et al., 1988). As GPS
and GLONASS systems matured and the number of
CORS increased, they produced sufficient observation data
within a short time, enabling the inversion of IED struc-
tures possible; consequently, numerous scholars have pro-
posed effective and reliable CIT methods. Generally,
these methods can be divided into function-based and pix-
el-based methods; Yao et al. (2013) thoroughly described
the developmental history and characteristics of these
methods. The function-based method is based on the con-
cept that during the model construction process, the IED
distribution can be described using mathematical functions
such as spherical harmonics combined with empirical
orthogonal functions (Fremouw et al., 1992; Gao and
Liu, 2002; Hansen, 1998; Howe, 1997; Liu, 2004), or
empirical orthogonal function integrated with the Chap-
man profile (Brunini et al., 2004) or a B-spline (Schmidt
et al., 2008; Zeilhofer et al., 2009). The primary purpose
of the function-based method is to estimate the function
coefficient. By contrast, the pixel-based is based on the con-
cept of dividing the modeling regions into equally sized pix-
els and assuming that the pixel points for identical pixels
possess identically sized IEDs before using an inversion
technique to estimate the IED (An, 2011; Hernandez-
Pajares et al., 1999; Kamp, 2013; Kunitake et al., 1995;
Ma and Maruyama, 2003; Rius et al., 1997; Wen, 2007;
Wen et al., 2012; Zou, 2004; Zou and Xu, 2003).

The keypoint to the function-based method is selecting
an optimal mathematical function to represent the spa-
tial–temporal distribution of the IEDs in the modeling area
during model construction, and subsequently using the
inversion theory to effectively estimate the function coeffi-
cient. But researchers have experienced difficulties in
choosing ionospheric mathematical functions and para-
meters. Therefore, developing a new modeling method that
can automatically, flexibly, and adaptably generate a math-
ematical function should considerably enhance the effec-
tiveness and convenience of the function-based method.
Based on the mentioned assertions, this study proposed a
novel CIT method called the Least Squares method-
Multivariate Adaptive Regression Splines (LS-MARS).
The IEDs calculated by International Reference Iono-
sphere (IRI) in the modeling area were used as the training
data and the MARS statistical learning technique was used
to choose the best representing basis functions for the elec-
tron density. Subsequently, the selected basis functions was
substituted into the observation equation of the GPS TEC
to calculate the design matrix. Finally, the weighted
damped least squares (WDLS) were employed to reestimate
the coefficients of the selected basis functions. In contrast
to the traditional function-based CIT method, the LS-
MARS method features some advantages, such as that it
can automatically, accurately, flexibly, and adaptably pro-
duce an 3D model based on the IRI values without a priori
knowledge of the IED distribution mathematical function.
MARS is a statistical learning technique that can be used
for models containing high-dimensional data; thus, the
LS-MARS is capable of establishing high-dimensional
models, thereby contributing to ionosphere research and
facilitating model construction. Durmaz et al. (2010) used
the MARS technique for VTEC (Vertical Total Electron
Content) estimation over the European region. They
showed that the algorithm has the ability to efficiently
model the regional distribution of the VTEC and MARS
can provide similar RMSE values with a much smaller
number of coefficients compared to the spherical harmonic
modeling. Similar to the LS-MARS concept, the regional
2D ionospheric VTEC model-construction method has
been described in a previous study (Kao et al., 2014).

The structure of this paper is as follows: Section 2
describes the methods of preprocessing the observation
data obtained from the ground GPS reference stations
and how the observation equation was formed. Section 3
introduces the theoretical basis of MARS and describes
how the LS-MARS method to model regional 3D iono-
spheric electron density based on GPS data and IRI. Sec-
tion 4 details the research data sources and model
specifications during estimation, presenting an analysis
and comparison of the research findings. Section 5 con-
cludes the paper.

2. GPS observation and preprocessing

GPS is extensively used in various domains such as sur-
veying, geoscience, and navigation. Almost every country
has a ground GPS network. The IGS provides researchers
with global observation data free of charge. Nowadays the
GPS, have become a promising tool and been widely used
to monitor electron distribution within the ionosphere. In
this study, a geometry-free linear combination of dual-fre-
quency observations was used to estimate the IED. The
geometry-free linear combination can completely eliminate
the frequency independent terms in the original observa-
tion equation, such as the geometrical distance, tropo-
spheric delays, satellite clock error, and receiver clock
error, leaving only the differential code bias (DCB) of the
satellite (SDCB) and receiver (RDCB) and the difference
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between ionospheric delays on L1 and L2 frequencies and
noise. GPS pseudo range observations are less accurate
compared with carrier phase observations, but the
ambiguity must be estimated when using carrier phase
observations. To overcome this problem, phase-smoothed
code was used to compose geometry-free linear combina-
tion of the observations (Schaer, 1999), as follows:

~P 1ðtÞ ¼ U1ðtÞ þ �P 1 � �U1 þ 2 � f 2
2

f 2
1 � f 2

2

� ððU1ðtÞ � �U1Þ

� ðU2ðtÞ � �U2ÞÞ ð1Þ

~P 2ðtÞ ¼ U2ðtÞ þ �P 2 � �U2 þ 2 � f 2
1

f 2
1 � f 2

2

� ððU1ðtÞ � �U1Þ

� ðU2ðtÞ � �U2ÞÞ ð2Þ
~L4 ¼ ~P 1 � ~P 2

¼ RDCBþ ðdion 1� dion 2Þ þ SDCBþ e ð3Þ

where ~P F ðtÞ is the smoothed code measurement of frequen-
cy F at epoch t; UF ðtÞ is the carrier phase measurement of
frequency F at epoch t; fF is the frequency of carrier LF,
f1 = 1575.42 MHz, f2 = 1227.60 MHz; �P F � �UF is the mean
difference between all accepted code and phase measure-
ments in the current observation arc on frequency F; and
~L4 is the smoothed geometry-free linear combination in
units of meters. RDCB and SDCB are the differential code
bias of the receiver and satellite respectively, in units of
meters; dion1 and dion2 are the ionospheric delays on L1
and L2, respectively, in units of meters. e is the observation
error. Only the first order of ionospheric refraction is con-
sidered when estimating the ionospheric delays in GPS pro-
cessing, because the first order effects account for 99.9% of
total. Its conversion relation to the total electron content
(TEC) is as follows (Hofmann-Wellenhof et al., 2007):

dionF ¼ 40:3

f 2
F

TEC with TEC ¼
Z

Neð/; k;HÞds ð4Þ

where TEC is the total electron content of the satellite and
receiver ray path, which is typically represented in total
electron content units (TECU; 1 TECU = 1016 electrons/
m2), and Ne(u,k,H) is the IED at the geographic position
of (u,k,H). Eq. (4) can be substituted into Eq. (3) to obtain
the following:

~L4 ¼ RDCBþ SDCBþ 40:3
1

f 2
1

� 1

f 2
2

 !

�
Z

Neð/; k;HÞdsþ e ð5Þ
3. Methodology

3.1. Multivariate Adaptive Regression Splines

MARS is an adaptive regression procedure from the sta-
tistical learning field that was proposed by Friedman
(1991). MARS can be considered an extension of linear
models that automatically models nonlinearity and the
interactions among variables. It is defined as a multivari-
ate, piecewise regression method that can be used to model
complex relations between inputs and outputs (Hastie
et al., 2009). This piecewise regression method first divides
the input space, which is defined as the collection of obser-
vation locations, into sub spaces for multiple knots and
then fits a spline function between these knots, adaptively
using so-called basis functions. In this study the piece-
wise-cubic type of modeling was employed for building
MARS models using ARESLab toolbox (Jekabsons,
2010). The cubic function is given as follows (Friedman,
1991):

CðX j s ¼ þ1j ; t1; t; t2Þ

¼
0; if X j 6 t1

b1ðX j � t1Þ2 þ c1ðX j � t1Þ3; if t1 < X j < t2

X j � t; if X j P t2

8><
>:

CðX j s ¼ �1j ; t1; t; t2Þ

¼
t � X j; if X j 6 t1

b2ðX j � t2Þ2 þ c2ðX j � t2Þ3; if t1 < X j < t2

0; if X j P t2

8><
>:

ð6Þ

with t1 < t < t2; Setting

b1 ¼ ð2t2 þ t1 � 3tÞ=ðt2 � t1Þ2

c1 ¼ ð2t � t2 � t1Þ=ðt2 � t1Þ3

b2 ¼ ð3t � 2t1 � t2Þ=ðt1 � t2Þ2

c2 ¼ ðt1 þ t2 � 2tÞ=ðt1 � t2Þ3

t 2 fxijg; t1 ¼ ðminðX jÞ þ tÞ=2;

t2 ¼ ðt þmaxðX jÞÞ=2;

i ¼ 1; 2; . . . ;N; j ¼ 1; 2; . . . ; p

ð7Þ

where N is the number of observations; p is the dimension
of the input space; Xj is the jth component of the input
space; xi,j is the observed value of the inputs; t is a univari-
ate knot location from the set {xij}, t1 is a univariate knot
location for the additional side knot on the left of the
central knot t, t2 is a univariate knot location for the addi-
tional side knot on the right of the central knot t; the quan-
tities s in Eq. (6) take on values �1 and indicate the (right/
left) sense of the associated cubic function.

The idea of MARS is to form the cubic functions for
each input Xj with knots at each observed value xij of that
inputs. Subsequently, the functions from the collected
cubic functions or their products were used to build a
regression function.

A general MARS model is defined as follows (Friedman,
1991):

f ðXÞ ¼ a0 þ
XM

m¼1

amBmðXÞ ð7Þ
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where M is the number of basis functions; a0 is the inter-
cept; am is the coefficient of the basis functions; BmðXÞ is
the basis function obtained by a function from the collected
cubic functions or their products, m = 1,2, . . . ,M;
X = [X1,X2, . . . ,Xp]T is a p dimensional vector of input
variables; and f(X) is the regression function constructed
using MARS.

The basic MARS concept is to build the model by add-
ing basis functions in the forward stepwise procedure and
eliminating the term whose removal causes the smallest
increase in residual sum of squares (RSS) (least contribu-
tion) from the model during the backward deletion proce-
dure (Friedman, 1991; Hastie et al., 2009). In the forward
stage (constructive phase) a large over-fitted model of the
form Eq. (8) is built. A generalized cross-validation
(GCV) statistic is employed to prune the model to over-
come this problem in the backward stage (pruning phase).
The GCV is defined as follows (Hastie et al., 2009):

GCV ðkÞ ¼
PN

i¼1 yi � â0 þ
PM

m¼1âmBmðxiÞ
� �� �2

ð1� aðkÞ=NÞ2
ð8Þ

where k is the tuning parameter; N is the number of obser-
vations; M is the number of basis functions; yi is the ith
observation with the corresponding observation location
xi = [xi,1,xi,2 , . . . ,xi,p]T, i = 1,2, . . . ,N, p is the dimension;
â0 is the estimated intercept; âm is the estimated coefficient
of the basis functions; BmðXÞ is the basis function,
m = 1,2, . . . ,M; and a(k) is the effective number of para-
meters in the model, which can be determined using
a(k) = r + ck, where r is the number of linearly indepen-
dent basis functions in the model. k is the number of knots
selected in the forward process and c is the penalty for
selecting knots, which is recommended to be 3 (Hastie
et al., 2009). In the backward stage, the model that exhibits
the minimal GCV value is selected as the optimal MARS
model (the forward and backward stage information is
detailed in Durmaz et al., 2010; Friedman, 1991; Hastie
et al., 2009 and Jekabsons, 2010).
3.2. LS-MARS algorithm

To obtain the optimal 3D IED approximate model, LS-
MARS first divided the ionosphere into voxels (pixels in
three dimensions) where the electron density distribution
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within each voxel is considered to be constant and calculat-
ed the geographic latitude u, geographic longitude k, and
the height H above the Earth of the voxel gridpoints.
Fig. 1 depicts the ionospheric CIT and the voxel gridpoints
of the ionosphere obtained in the LS-MARS approach.
The optimal 3D IED approximate model can be deter-
mined by adjusting the model, using adaptive continuous
learning and X = [u,k,H]T of the voxel gridpoints as the
independent variables and the IED values of voxel grid-
points calculated from IRI at the modeling time T as the
dependent variable; the MARS algorithm can be
employed. The estimated IED model as Eq. (8) form:

Ne marsðXÞ ¼ â0 þ
XM

m¼1

âmBmðXÞ þ e ð9Þ

where Ne_mars(X) is the IED approximate model; â0 is the
estimated intercept; âm is the estimated coefficient of the
basis functions; and BmðXÞ is the selected basis function
by MARS to fit IRI, m = 1,2, . . . ,M; e is the observation
error.

In this study, we focus on the estimation of IED; thus,
the DCB values for the satellites and receivers are obtained
from IGS Final IONEX files through the Internet and sub-
stituted in Eq. (5) for SDCB and RDCB parts to derive
TEC as:

Y ¼
~L4� SDCB� RDCB

40:3ð1=f 2
1 � 1=f 2

2Þ
¼
Z Ps

Pr

NeðXÞdsþ e ð10Þ

where Y is the TEC observation; X is the observation loca-
tion; e is the observation error; Ps and Pr are the upper and
lower integral bounds, are defined as the points where the
ray-path of a GPS signal intersects the upper and lower
ionosphere, respectively see Fig. 1.

The selected basis functions from Ne_mars(X) are substi-
tuted into Eq. (11), yielding the following observation
equation:

Y ¼
Z Ps

Pr

a0 þ
XM

m¼1

amBmðXÞ
" #

ds þ e ð11Þ

Eq. (12) is the fundamental observation equation for
conducting 3D IED modeling by using tomographic inver-
sion based on GPS data and IRI by using LS-MARS. If
there are N observations, the observation equations can
be expressed as follows:
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Fig. 1. The ionospheric CIT and the voxel gridpoints of ionosphere in LS-MARS approach.
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where N is the number of TEC observations; M is the
number of basis functions; Y is the N � 1 vector of TEC
observations; A is the N � (1 + M) design matrix; D is
the (1 + M) � 1 vector of unknown parameters; e is the
N � 1 vector of observation errors; DS(i) is the ray-path

distance from Ps(i) to Pr(i),
R PsðiÞ

PrðiÞ BmðXÞds is the integral

value calculated from mth basis function of the ith observa-
tion, Ps(i) and Pr(i) are the upper and lower integral
bounds, i = 1,2, . . . ,N, m = 1,2, . . . ,M; and ak is the IED
model coefficient of MARS that must be reestimated,
k = 0,1, . . . ,M. In this step, the parametrization and
Gauss–Legendre quadrature (Zeilhofer et al., 2009) were
applied when the A matrix was calculated.

In this study, it was assumed that the mean and RMS of
the observation errors were zero and elevation dependent
(Schaer, 1999), respectively. The observation errors were
uncorrelated with each other. The variance–covariance
matrix and weight matrix for the observations were defined
as follows:

Q ¼

r2
1 0 � � � 0 0

0 . .
.

� � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � . .
.
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2
666666664
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777777775
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with riðziÞ ¼
r0

cos ðziÞ

ð13Þ

P ¼ r2
0Q�1

where Q is the N � N diagonal variance–covariance matrix
of observations; P is the weight matrix of observations; N
is the number of observations; zi is the zenith angle of the
satellite, ri is the standard deviation of the observations,
i = 1,2, ... ,N; and r0 is the standard deviation of unit
weight corresponding to an observation at the zenith.
The Gauss–Markov model was built using mathematical
model Eq. (13) and stochastic model Eq. (14). The key task
involved in CIT is estimating the model coefficients as effi-
ciently and accurately as possible by using Eqs. (13) and
(14). Unfortunately, the CIT is an under-determined,
mixed-determined, ill-posed inverse problem and unknown
parameters cannot be reliably or efficiently estimated using
the standard least squares inversion technique. To over-
come this problem, the so-called weighted damped least
squares method was adopted in this study:

D̂ ¼ ðATPAþ aPXÞ
�1ðATPY þ aPX X0Þ ð14Þ

where a is the regularization parameter; PX and X0 are the
prior information introduced to stabilize the estimation
process, PX is the given weight matrix of unknown
parameters and X0 is the given initial value of unknown

parameters. When solving D̂ we may apply the iterative
maximum-likelihood variance component estimation to
estimate the regularization parameter a see Koch and
Kusche (2002). A unit matrix I was introduced to represent
the weight matrix of unknown parameters, i.e., supposing
that all unknown parameters have the same weights, and
the initial value of unknown parameters is â ¼
½â0; â1;...;âM �T obtained from Eq. (10).

Finally, the IED model is generated using the selected
basis functions from Eq. (10) and the reestimated MARS
coefficients from Eq. (15). The calculation was executed
using the Matlab program version 7.14.
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4. Data and results

The collected GPS data in this study originated from the
Western European 42 IGS CORS 24-h dual-frequency
GPS observations obtained on February 29 and March 1,
2012 (DoY60–61). The 38 IGS station observations were
used to reconstruct the IED model, and observations from
the remaining four stations (GRAZ, GRAS, SPT0, and
LAMA) were applied to conduct a model quality analysis.
To conduct an VTEC verification, the VTEC calculated
from the electron density model of LS-MARS was com-
pared with the VTEC obtained from the IGS final IONEX
files at A (latitude 55�N, longitude 15�E), B (latitude 45�N,
longitude 15�E), and C (latitude 35�N, longitude 15�E) to
show the consistency with IGS VTEC maps. Fig. 2
Fig. 2. The distribution of the 42 IGS GPS sta

Table 1
The number of GPS signal ray paths (SRP) and basis functions (BF).

TIME (UT)

00:00 02:00 04:00 06:00 08:00

60 SRP 129 159 236 162 174
BF 45 56 61 48 38

61 SRP 117 143 224 149 153
BF 53 59 61 48 37
illustrates the distribution of GPS stations and the check
points of VTEC verification used in this study. The geo-
graphical coverage of the 42 IGS stations is from 0–30�
East longitude and 30–60� North latitude. In the region
chosen for CIT, the longitude ranged from 0� to 30� East,
latitude ranged from 30� to 60� North, and altitude ranged
from 100 to 1000 km. The discretized increments in latitude
and longitude were 1�, the steps in height were 50 km when
the IED values were calculated, using IRI2012 to construct
an approximate IED model by using MARS. Thus, 18,259
(31 � 31 � 19) IEDs of the voxel gridpoints were calculat-
ed from IRI2012 to fit the approximate 3D IED model at
each epoch. A set of ionospheric electron density
coefficients was estimated every 2 h. Table 1 lists the num-
ber of GPS signal ray paths and basis functions at every
tions and 3 check points used in this study.

10:00 12:00 14:00 16:00 18:00 20:00 22:00

198 157 192 184 147 155 177
48 30 32 41 50 65 56

170 135 147 143 138 146 169
51 33 36 44 54 65 55
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modeling epoch on DoY60 and DoY61 in 2012. When
using MARS to train the approximate model, the maximal
number of basis functions (including the intercept term)
during the forward model building phase (before pruning
in the backward phase) was set at 100 and the maximum
degree of interaction between input variables (order of
products of basis functions allowed) was set to 3; the piece-
wise-cubic type of modeling was employed.

Fig. 3 shows the TEC measurements from the GPS sta-
tions at GRAZ, GRAS, SPTO, and LAMA at every mod-
eling epoch on DoY60 in 2012. Fig. 4 shows the TEC
measurements from the GPS stations at GRAZ, GRAS,
SPTO, and LAMA at every modeling epoch on DoY61
in 2012. Figs. 5 and 6 show the comparison of the recovery
TEC error calculated from LS-MARS and MAR-
S_IRI2012 at GRAZ, GRAS, SPTO, and LAMA at every
Fig. 3. The TEC measurements from the GPS stations at

Fig. 4. The TEC measurements from the GPS stations at

Fig. 5. Comparison of the recovery TEC error calculated from LS-MARS and
epoch on DoY60, 2012.
modeling epoch on DoY60 and DoY61 in 2012, respective-
ly. The MARS_IRI2012 can be considered an approximate
model of the IRI2012, which can be estimated using Eq.
(10). The recovery TEC error is calculated as follows:

R:E ¼ jTECGPS � TECmodelj ð15Þ

where TECGPS are the TEC measurements from the GPS
stations at GRAZ, GRAS, SPTO, and LAMA. TECmodel

are the TEC values derived from the IED model. Fig. 5
indicates that the mean absolute TEC error of the
LS-MARS and MARS_IRI2012 are 2.55 TECU and
3.98 TECU, respectively. The RMS of the absolute TEC
error of the LS-MARS and MARS_IRI2012 are
3.29 TECU and 5.33 TECU, respectively. Fig. 6 indicates
that the mean absolute TEC error of the LS-MARS and
MARS_IRI2012 are 2.77 TECU and 3.51 TECU,
GRAZ, GRAS, SPTO, and LAMA on DoY60, 2012.

GRAZ, GRAS, SPTO, and LAMA on DoY61, 2012.

MARS_IRI2012 at GRAZ, GRAS, SPTO, and LAMA at every modeling



Fig. 6. Comparison of the recovery TEC error calculated from LS-MARS and MARS_IRI2012 at GRAZ, GRAS, SPTO, and LAMA at every modeling
epoch on DoY61, 2012.
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respectively. The RMS of the absolute TEC error of the
LS-MARS and MARS_IRI2012 are 3.58 TECU and
Table 2
Comparison of the statistical results of absolute DVTEC between IGSF
and LS-MARS, MARS_IRI2012 and IRI2012 on days from DoY60 to
DoY61 in 2012 at A, B and C.

Absolute DVTEC between IGSF and (TECU)

LS-MARS MARS_IRI2012 IRI2012

Mean A(55�N,15�E) 0.80 1.76 1.85
B(45�N,15�E) 0.72 2.83 2.94
C(35�N,15�E) 1.77 2.49 2.58

RMS A(55�N,15�E) 0.96 1.97 2.04
B(45�N,15�E) 0.85 3.18 3.31
C(35�N,15�E) 2.23 3.21 3.27

Fig. 7. Comparison of the VTEC calculated from LS-MARS, MARS_IRI2

Fig. 8. Comparison of the VTEC calculated from LS-MARS, MARS_IRI2
4.49 TECU, respectively. Thus, the results suggest that
the LS-MARS model had a smaller recovery TEC error
than did the MARS_IRI2012 model.

Table 2 compares the statistical results of absolute
DVTEC between IGSF and LS-MARS, MARS_IRI2012,
and IRI2012 on days from DoY60 to DoY61 during
2012 at A, B, and C. Figs. 7–9 compare the VTEC calculat-
ed from LS-MARS, MARS_IRI2012, IRI2012 and IGSF
on days from DoY60 to DoY61 in 2012 at A, B and C,
respectively. Table 2 indicates that the mean absolute
DVTEC between IGSF and LS-MARS at A, B and C are
0.80 TECU, 0.72 TECU and 1.77 TECU, respectively.
The RMS of absolute DVTEC between IGSF and
LS-MARS at A, B and C are 0.96 TECU, 0.85 TECU
and 2.23 TECU, respectively. The results suggest that the
VTEC calculated from LS-MARS was closer to the VTEC
012, IRI2012 and IGSF on days from DoY60 to DoY61 in 2012 at A.

012, IRI2012 and IGSF on days from DoY60 to DoY61 in 2012 at B.
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obtained from the IGS final IONEX files than was the
VTEC calculated from MARS_IRI2012 and IRI2012.
The VTEC calculated from MARS_IRI2012 and IRI2012
were very close.
Fig. 9. Comparison of the VTEC calculated from LS-MARS, MARS_IRI2

Fig. 10. The distribution of IED for LS-MARS (a) and the error IED between
2012, the RMS of the error IED is 9.18E+10 el/m3.

Fig. 11. The distribution of IED for LS-MARS (a) and the error IED between
2012, the RMS of the error IED is 3.80E+10 el/m3.
Figs. 10–15 show the distribution of IED for LS-MARS
and the error IED between IRI2012 and LS-MARS at
heights of 300, 400, 500 km at UT10:00 on days from
DoY60 to DoY61 in 2012, all of their units are 1 el/m3;
012, IRI2012 and IGSF on days from DoY60 to DoY61 in 2012 at C.

IRI2012 and LS-MARS (b) at heights of 300 km at UT10:00 on DoY60 in

IRI2012 and LS-MARS (b) at heights of 400 km at UT10:00 on DoY60 in



Fig. 12. The distribution of IED for LS-MARS (a) and the error IED between IRI2012 and LS-MARS (b) at heights of 500 km at UT10:00 on DoY60 in
2012, the RMS of the error IED is 4.74E+10 el/m3.

Fig. 13. The distribution of IED for LS-MARS (a) and the error IED between IRI2012 and LS-MARS (b) at heights of 300 km at UT10:00 on DoY61 in
2012, the RMS of the error IED is 2.46E+10 el/m3.

Fig. 14. The distribution of IED for LS-MARS (a) and the error IED between IRI2012 and LS-MARS (b) at heights of 400 km at UT10:00 on DoY61 in
2012, the RMS of the error IED is 4.08E+10 el/m3.
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Fig. 15. The distribution of IED for LS-MARS (a) and the error IED between IRI2012 and LS-MARS (b) at heights of 500 km at UT10:00 on DoY61 in
2012, the RMS of the error IED is 3.77E+10 el/m3.
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the maximum electron density occurred 300 km above the
surface of the Earth. At various heights, Figs. 10–15 indi-
cate a common feature, indicating that the electron density
is large when the latitude is low, reflecting the 3D distribu-
tion of electron density in the inversion region.

5. Conclusion

A statistical learning-based method, namely LS-MARS,
was proposed in order to estimate the regional 3D IED.
MARS was used to automatically select the optimal repre-
senting basis functions for the electron density inside that
modeling area by using IRI2012 electron density data. Sub-
sequently, this selected basis functions was substituted into
the observation equation of the global positioning system
total electron content to calculate the design matrix. The
weighted damped least squares method was used to reesti-
mate the coefficients of the IED model. Compared with
conventional function-based methods, the proposed
method can be used to attain optimal model automatically,
flexibly, adaptively based on the IRI2012 without a priori
knowledge of the IED distribution mathematical function.
We tested the proposed method using data from the IGS
GPS network on days from DoY60 to DoY61 in 2012 in
Europe. The findings showed that the LS-MARS model
had smaller recovery TEC error compared with the MAR-
S_IRI2012 model and the VTEC calculated from LS-
MARS was more closer to the VTEC obtained from IGS
final IONEX files than were the VTEC calculated from
the MARS_IRI2012 and IRI2012. Therefore, this method
demonstrates strong modeling effectiveness and reliability,
it should serve as an attractive and alternative method
for estimating regional 3D IED.
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