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Abstract

The geometry-free linear combination of dual-frequency GNSS reference station ground observations are currently used to build the
Vertical Total Electron Content (VTEC) model of the ionosphere. As it is known, besides ionospheric delays, there are differential code
bias (DCB) of satellite (SDCB) and receiver (RDCB) in the geometry-free observation equation. The SDCB can be obtained using the
International GNSS Service (IGS) analysis centers, but the RDCB for regional and local network receivers are not provided. Therefore,
estimating the RDCB and VTEC model accurately and simultaneously is a critical factor investigated by researchers. This study uses
Multivariate Adaptive Regression Splines (MARS) to estimate the VTEC approximate model and then substitutes this model in the
observation equation to form the normal equation. The least squares method is used to solve the RDCB and VTEC model together.
The research findings show that this method has good modeling effectiveness and the estimated RDCB has good reliability. The esti-
mated VTEC model applied to GPS single-frequency precise point positioning has better positioning accuracy in comparison to the
IGS global ionosphere map (GIM).
� 2013 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Navigation and positioning accuracy is reduced as the
GPS signal is influenced by the ionosphere. Ionospheric
influence can reduce the accuracy by several meters to tens
of meters, and more than a hundred meters during a violent
ionospheric storm. This ionospheric effect has apparently
become the largest error source in GNSS navigation and
positioning after Selective Availability (SA) is turned-off
for single-frequency users. Therefore, the ionospheric effects
must be considered for high accuracy positioning. There are
two common ways to reduce the effects. The first method
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uses the ionosphere-free linear combination of observations
and the second uses the ionospheric correction model. In this
study, we focus on the development of a new, effective iono-
spheric correction model for single frequency receiver appli-
cations. The precise ionospheric model is also applicable to
space weather studies and geoscience (Komjathy, 1997).
The widely known correction model for real-time applica-
tion is the Klobuchar model (1986). The model coefficients
are transmitted to the GPS users in the navigation message.
This is an approximate model, providing only about 50%
ionospheric effects (Klobuchar, 1987). Estimating a more
precise ionospheric correction model has been the focus of
many scholars. The Continuously Operating Reference Sta-
tions (CORS) are popular and have become increasingly
dense throughout the world. The ground-based dual-fre-
quency GPS observations have been used extensively to
study ionospheric models. The geometry-free linear combi-
nation of dual-frequency GPS observations can eliminate
rved.
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the frequency independent terms in the observation equa-
tion. However, the geometry-free linear combination con-
sists of three parameters, the differential code bias of the
satellite (SDCB) and receiver (RDCB) and the difference
between ionospheric delays on L1 and L2 frequencies.
Therefore, ionospheric model estimation is dependent on
the method used to estimate the aforesaid three parameters.

At present, the function-based method is the commonly
used method for simultaneous RDCB, SDCB and 2-D ion-
ospheric VTEC model estimation. The function-based
method assumes a single layer model (Klobuchar, 1987)
for ionospheric electron content representation. In single
layer model, all charged particles in the ionosphere are con-
sidered to be concentrated in a tiny spherical shell where the
electron content is represented as Vertical Total Electron
Content (VTEC). The intersection point of the satellite
emitted signal path through a single-layer model to the
ground receiver is called Ionospheric Pierce Point (IPP).
The distribution of VTEC over IPPs is assumed to be a
known mathematical function, e.g. Cosine, Parabola and
Polynomial functions, Spherical Harmonics, etc. (Georgia-
dou, 1994; Schaer, 1999; Paulo and Joao, 2000; Gao and
Liu, 2002; Ping et al., 2002; Yuan and Ou, 2004; Azpilicueta
et al., 2006; Zhang et al., 2006; Opperman et al., 2007; Kao
et al., 2012). This method has always bothered researchers
for the selection of mathematical function with appropriate
degree and order over modeling region. The ionosphere not
only varies periodically with the time and space, but also
has short-term irregular disturbances because of solar activ-
ity and geomagnetic variations. The same function model is
therefore unlikely to fit different ionospheric behaviors. In
order to overcome the above problems, statistical learning
and spatial interpolation techniques have been proposed
to model the ionospheric VTEC with good performance
in previous studies (Wielgosz et al., 2003; Orús et al.,
2005; Leandro and Santos, 2007; Durmaz et al., 2010; Dur-
maz and Karslioglu, 2011; Habarulema et al., 2011). How-
ever, the aforesaid studies only modeled VTEC or did not
regard RDCB as an unknown parameter and solved it
together with the model during modeling. Software (e.g.
Bernese) was used to assume that the VTEC corresponds
to the SH or Taylor series functions to estimate the RDCB.
The estimated RDCB was then substituted as a given value
in the observation equation to work out the VTEC in each
IPP position before modeling. The estimated RDCB value
will be related to the selected VTEC function model (Kao
et al., 2013). The model built using the above method results
from the VTEC function model conditions selected for esti-
mating the RDCB. Considering the above problem, the
RDCB shall be regarded as an unknown parameter and
estimated together when a statistical learning method is
used to estimate the ionospheric model.

The function-based method will improve ionospheric
VTEC and RDCB estimation effectiveness by finding a
method that automatically constructs a best fitting mathe-
matical function of ionospheric VTEC according to the
observations without prior knowledge of the ionospheric
VTEC distribution. Therefore, this paper presents a statisti-
cal learning-based method to model ionospheric VTEC and
estimate the RDCB simultaneously. This study proposes
using the Multivariate Adaptive Regression Splines
(MARS) technique to estimate the approximate ionospheric
VTEC model first. This model is then substituted in the
observation equations to form the normal equation. The
least squares method is used to simultaneously solve RDCB
and the ionospheric VTEC model. Durmaz et al. (2010) used
the MARS technique for VTEC estimation over the Euro-
pean region. They showed that the algorithm has the ability
to efficiently model the regional distribution of the VTEC
and MARS can provide similar RMSE values with a much
smaller number of coefficients compared to the spherical
harmonic modeling. The structure of this paper is as follows;
Section 2 describes the observation data preprocessing from
ground GPS reference stations and how the observation
equation is formed. Section 3 contains a brief description
of the MARS theoretical basis and the concept and process
of this research method. Section 4 declares the research data
sources and the model specifications during estimation and
analyzes and compares the research findings. The last section
concludes the research findings of this paper.
2. GPS observations and preprocessing

GPS is used extensively in various domains, such as sur-
veying, geoscience, navigation and so on. Nearly every
country has its own ground GPS network. The IGS pro-
vides global observation data, allowing researchers to
obtain the data free of charge through networks. The easy
acquisition of GPS data and the ultra-high time and space
data sampling rate have allowed dual-frequency GPS obser-
vations to be used extensively by the present researchers to
estimate the ionospheric VTEC. This method uses mostly
the geometry-free linear combination of dual-frequency
observations to estimate the ionospheric VTEC. The geom-
etry-free linear combination can eliminate the frequency
independent terms in the original observation equation
completely, such as geometrical distance, tropospheric
delays, satellite clock error and receiver clock error, leaving
only the ionospheric delays, RDCB, SDCB and noise. It is
known that the accuracy of GPS pseudo range observation
is lower than that of carrier phase observation, but the
ambiguity must be estimated when using carrier phase
observations. In order to overcome the above problem, this
study used phase-smoothed code to compose geometry-free
linear combination of observations (Schaer, 1999):

~P 1ðtÞ ¼ U1ðtÞ þ �P 1 � �U1 þ 2 � f 2
2

f 2
1 � f 2

2

� U1ðtÞ � �U1ð Þ � U2ðtÞ � �U2ð Þð Þ ð1Þ

~P 2ðtÞ ¼ U2ðtÞ þ �P 2 � �U2 þ 2 � f 2
1

f 2
1 � f 2

2

� U1ðtÞ � �U1ð Þ � U2ðtÞ � �U2ð Þð Þ ð2Þ
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~L4 ¼ ~P 1 � ~P 2 ¼ RDCB þ ðdion1� dion2Þ þ SDCB ð3Þ

where ~P F ðtÞ is the smoothed code measurement of fre-
quency F at epoch t; UF(t) is the carrier phase measurement
of frequency F at epoch t; fF is the frequency of carrier F;
�P F � �UF is the mean difference between all accepted code
and phase measurements in the current observation arc
on frequency F; ~L4 is the smoothed geometry-free linear
combination in units of meters. RDCB and SDCB are the
hardware delays of the receiver and satellite respectively,
in units of meters; dion1 and dion2 are ionospheric delays
on L1 and L2 respectively, in units of meters. Only the first
order of ionospheric refraction is considered while estimat-
ing the ionospheric delays in GPS processing, due to the ef-
fect of first order accounts for 99.9% of total. Its
conversion relation with the Slant Total Electron Content
(STEC) is (Hernández-Pajares M. et al., 2011):

dionF ¼ 40:3

f 2
F

STEC ð4Þ

where STEC is the slant total electron content in the satel-
lite and receiver propagation path, usually in TECU (Total
Electron Content Units), 1 TECU = 1016 electrons/m2,
(Hofmann-Wellenhof et al., 2007).

The ionosphere is a region of ionized plasma that extends
from roughly 50 km to 1000 km above the Earth’s surface.
The ionosphere can be divided into several layers in altitude
according to electron density. For convenient ionosphere
modeling, this study uses the single-layer model concept
introduced by Klobuchar (1987). It is assumed that all elec-
trons in the ionosphere are concentrated into a thin shell at
altitude H km above the Earth’s surface. The intersection
point of the GPS signal path with ionospheric shell is defined
as the Ionospheric Pierce Point (IPP) at which the slant ion-
ospheric delays has a zenith distance of Z

0
. The projection of

the IPP onto the Earth’s surface is called sub-ionospheric
point, as shown in Fig. 1: where Z, Z

0
are the zenith distances

of the satellite at the station and IPP respectively. R is the
mean radius of the Earth, H is the height of the single layer
above the Earth’s surface. Since the ionospheric model is
based on VTEC, it is required to use a mapping function
to convert the STEC on the GPS signal path into VTEC at
the sub-ionospheric point (Schaer, 1999):

F IðzÞ ¼
STEC
VTEC

¼ 1

cos z0
with sin z0 ¼ R

Rþ H
sin z ð5Þ

where H is generally recognized as 350–450 km above the
Earth’s surface.

Eqs. (4) and (5) are substituted in Eq. (3) to obtain:

~L4 ¼ RDCBþ SDCBþ 40:3
1

f 2
1

� 1

f 2
2

� �
� F I � VTEC ð6Þ

According to Eq. (6), the number of RDCB parameters
is the number of stations, the number of SDCB parameters
is the number of satellites, VTEC is the Vertical Total Elec-
tron Content in each IPP position. Therefore, the number
of unknown parameters will be larger than the number of
observation equations leading to rank deficiency. In order
to estimate the RDCB, SDCB with VTEC, it is usually
assumed that the VTEC distribution corresponds to a
known mathematical function.

3. Methodology

3.1. MARS (multivariate adaptive regression splines)

MARS is an adaptive regression procedure from the sta-
tistical learning field proposed by Friedman (1991). MARS
can be seen as an extension of linear models that automat-
ically model non-linearity and the interactions between
variables. It is defined as a multivariate, piecewise regres-
sion method that can be used to model complex relation-
ships between inputs and outputs (Hastie et al., 2009).
Using a piecewise regression method, MARS divides the
space of inputs into multiple knots first and then fits a
spline function between these knots using so-called basis
functions in an adaptive way. The MARS basis functions
has the form (Hastie et al., 2009):

ðx� tÞþ ¼
x� t; if x > t
0; otherwise

�

ðt � xÞþ ¼
t � x; if x < t
0; otherwise

� ð7Þ

where x is the input variables; t is the knot location; “+”

sign indicates the positive part of the function.
Eq. (7) is called a reflected pair. The idea of MARS is to

form reflected pairs for each input space with knots at each
observed location of that input value. Therefore, the collec-
tion of basis functions is (Hastie et al., 2009):

C ¼ f X j � tÞþ; ðt � X j

� �
þg

with t 2 xij; i ¼ 1; 2; . . . ;N ; j ¼ 1; 2; . . . ; p ð8Þ

where p is the dimension of the input space; N is the number
of observations; C is the basis functions set, if all of the in-
put values are distinct, there are 2 � N � p basis functions;
Xj is the j-th component of the input space; xij is the input
values; t is the univariate knot location from xij. The MARS
algorithm builds a regression function using the functions
from the C set and their products. A general MARS model
is defined as follows (Hastie et al., 2009):

f ðxÞ ¼ a0 þ
XM

m¼1

amBmðxÞ ð9Þ

where M is the number of basis functions; a0 is the inter-
cept; am is the coefficient of basis functions and Bm(x) is
a basis function constructed from set C, or a product of
two or more such functions, m = 1,2,. . .,M; x is the input
variables; f(x) is the regression function built by MARS.

The basic MARS concept is to build the model by adding
basis functions in the forward stepwise procedure and elim-
inating the term whose removal causes the smallest increase
in residual squared error (least contribution) from the
model in the backward deletion procedure (Hastie et al.,
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2009). In the forward stage (constructive phase) a large
over-fitted model of the form Eq. (9) is built. A generalized
cross-validation (GCV) statistic is employed to prune the
model to overcome this problem in the backward stage
(pruning phase). The GCV is defined as (Hastie et al., 2009):

GCV ðkÞ ¼
PN

i¼1 yi � â0 þ
PM

m¼1âmBmðxiÞ
� �� �2

1�MðkÞ=Nð Þ2
ð10Þ

where k is the tuning parameter; N is the number of observa-
tions; M is the number of basis functions; yi is the observa-
tion, i = 1,2,. . .,N; â0 is the estimated intercept; âm is the
estimated coefficient of basis functions and Bm(x) is the basis
function, m = 1,2,. . .,M; xi is the input variables,
i = 1,2,. . .,N; M(k) is the effective number of parameters in
the model, which can also be given by M(k) = r + ck, where
r is the number of linearly independent basis functions in the
model. k is the number of knots which are selected in the for-
ward process, c is the penalty for selecting knots, which is rec-
ommended as 3 (Hastie et al., 2009). In the backward stage,
the model, which has the minimum GCV value is selected as
the optimal MARS model. The more detailed information in
forward stage and backward stage, please see Friedman
(1991), Hastie et al. (2009) and Durmaz et al. (2010).
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3.2. Algorithm

In this study the DCB values for the satellites are
obtained from IGS Final IONEX files through the internet
and substituted in the equation in the SDCB part. Eq. (6) is
then changed to:
Y ¼ ~L4�SDCB
FF I

¼ RDCB
FF I
þ VTEC ðb; SÞ

with FF I ¼ 40:3 1
f 2

1

� 1
f 2

2

� �
� F I

ð11Þ

where Y is the vector of observations; b is the geographic
latitude of IPPs; S is the sun-fixed longitude of IPPs. First,
if the term RDCB in Eq. (11) is considered as a part of the
error. The optimum ionospheric VTEC approximate model
can be worked out by adjusting the model using adaptive
continuous learning and using b, S as the independent vari-
ables and Y as the dependent variable, using the MARS
algorithm. The estimated VTEC model as Eq. (9) form:

MVTECðb; SÞ ¼ â0 þ
XM

m¼1

âmBm ðb; SÞ ð12Þ

where MVTEC(b, S) is the ionospheric VTEC approximate
model; â0 is the estimated intercept; âm is the estimated coef-
ficient of basis functions and Bm(b, S) is the basis function,
m = 1,2,. . .,M. In this paper, the estimated ionospheric
VTEC model from Eq. (12) is called an approximate model
because the model has RDCB not yet separated out. The
estimated basis functions are then substituted into Eq.
(11) to obtain the observation equation:
where N is the number of observations; M is the number of
basis functions; r is the number of receivers; Y is the N � 1
vector of observations; A is the N � (r + 1 + M) design ma-
trix; X is the (r + 1 + M) � 1 vector of unknown parame-
ters; e is the N � 1 vector of observation errors; FFI(i,p)�1

is the calculated value from Eq. (5) and (11) for p-th obser-



Fig. 1. Single-layer model of ionosphere.

Fig. 2. Comput
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vation of i-th receiver, i = 1,2,. . .,r, p = 1,. . .,ki; Bm(bj, Sj) is
the calculated value from m-th basis function with the geo-
graphic latitude and sun-fixed longitude for j-th IPP,
m = 1,2,. . .,M, j = 1,2,. . .,N; RDCBi is the differential code
bias of the receivers, i = 1,2,. . .,r; ak is the VTEC model
coefficient of MARS need to be re-estimated,
k = 0,1,. . .,M. In this study it is assumed that the mean
and RMS for the observation errors are zero and elevation
dependent respectively (Schaer, 1999) and the observation
errors are uncorrelated with each other. The variance–
covariance matrix and weight matrix for the observations
are defined as the following:

Q ¼

r2
1 0 � � � 0 0

0 . .
.

� � � 0 0

..

. ..
.
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ing process.



Fig. 3. The distribution of GPS reference stations.

Fig. 4. The number of basis functions for the estimated MARS models for each dataset on days from DoY 185 to 200 in 2009.
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P ¼ r2
0Q�1

where Q is the N � N diagonal variance–covariance
matrix of observations; P is the weight matrix of observa-
tions; N is the number of observations; zi is the zenith
angle of the satellite and ri is the standard deviation of
the observations, i = 1,2,. . .,N; r0 is the standard
deviation of unit weight corresponding to an observation
at zenith. The Gauss–Markov model is built from
mathematical model Eq. (13) and stochastic model Eq.



Fig. 5. RMS of residuals for the estimated models for each dataset on days from DoY 185 to 200 in 2009.

Table 1
The mean and standard deviation (std) for the RMS of residuals for the estimated models for each interval on days from DoY 185 to 200 in 2009 (TECU).

Time (UT)

00–02 02–04 04–06 06–08 08–10 10–12 12–14 14–16 16–18 18–20 20–22 22–24

Mean 1.29 1.36 1.61 1.63 1.47 1.73 1.41 1.09 0.90 0.97 1.32 1.27
Std 0.17 0.22 0.35 0.31 0.37 0.25 0.26 0.12 0.06 0.08 0.09 0.08

Table 2
The daily mean and standard deviation (std) for the RMS of residuals for the estimated models on days from DoY 185 to 200 in 2009 (TECU).

DoY (2009)

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

Mean 1.26 1.28 1.43 1.44 1.46 1.44 1.31 1.33 1.38 1.36 1.43 1.34 1.22 1.31 1.16 1.25
Std 0.24 0.27 0.36 0.46 0.45 0.44 0.25 0.28 0.33 0.25 0.42 0.28 0.25 0.28 0.15 0.39

Table 3
The number of basis functions and the RMS of residuals for the estimated models for each interval on DoY 69 in 2012.

Time (UT)

00–02 02–04 04–06 06–08 08–10 10–12 12–14 14–16 16–18 18–20 20–22 22–24

BF 14 15 13 12 14 14 14 16 13 13 13 14
RMS (TECU) 2.55 3.91 4.84 4.23 5.05 8.22 5.27 2.25 3.34 2.83 3.05 1.42

Fig. 6. The estimates of RDCB on days from DoY 185 to 200 in 2009.
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Table 4
The mean and standard deviation (std) of receiver DCB (RDCB) estimates on days from DoY 185 to 200 in 2009 (ns).

Station

FLNM KDNM PKGM TCMS TMAM TNML TWTF YMSM

Mean �8.51 �1.86 �6.55 8.62 �5.90 6.00 �5.19 �0.25
Std 0.38 0.39 0.59 0.40 0.39 0.44 0.36 0.40

Table 5
The receiver DCB (RDCB) estimates on DoY 69 in 2012 (ns).

Station

FLNM KDNM PKGM TCMS TMAM TNML TWTF YMSM

RDCB �8.52 0.08 8.03 10.20 �4.42 7.11 �2.01 �0.03

Fig. 7. Comparison of the receiver DCB (RDCB) estimated by IGS, CODE, ESA, JPL and the proposed method at TCMS (a), TNML (b) and TWTF (c)
stations on days from DoY 185 to 200 in 2009.
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(14). The RDCB and the coefficients of ionospheric
VTEC model of MARS are estimated together using the
least squares method:
X ¼

RDCB1

..

.

RDCBr

a0

..

.

aM

2
66666666664

3
77777777775
¼ ðAT PAÞ�1ðAT PYÞ ð15Þ
Finally, the ionospheric VTEC model is created by the
estimated basis functions from Eq. (12) and the re-esti-
mated coefficients of MARS from Eq. (15). The calculation
in this study is carried out using a program developed by
the Matlab platform. The flow chart is shown in Fig. 2.
4. Data and results

The data used in this study were derived from 24-h dual-
frequency GPS observations from five Taiwan e-GPS refer-
ence stations, including YMSM, FLNM, KDNM, PKGM
and TMAM, and three IGS reference stations, including
TCMS, TNML and TWTF. The experimental data is
divided into two parts, the first part was extracted for 16



Table 7
Comparison of the receiver DCB (RDCB) estimated by IGS, CODE, ESA, JPL and the proposed method at TCMS, TNML and TWTF stations on DoY
69 in 2012 (ns).

Station

TCMS TNML TWTF

RDCB D_RDCB RDCB D_RDCB RDCB D_RDCB

Proposed 10.20 – 7.11 – �2.01 –
IGS 10.70 0.50 7.22 0.11 �2.24 �0.23
CODE – – – – �2.17 �0.16
ESA 10.79 0.59 7.45 0.34 �1.83 0.18
JPL – – 7.06 �0.05 �2.56 �0.55

Fig. 8. The positioning errors on days from DoY 185 to 200 in 2009.

Table 6
Comparison of the receiver DCB (RDCB) estimated by IGS, CODE, ESA, JPL and the proposed method at TCMS, TNML and TWTF stations on days
from DoY 185 to 200 in 2009 (ns).

Station

TCMS TNML TWTF

Mean Mean D_RDCB RMS of D_RDCB Mean Mean D_RDCB RMS of D_RDCB Mean Mean D_RDCB RMS of D_RDCB

Proposed 8.62 – – 6.00 – – �5.19 – –
IGS 9.41 0.79 0.90 6.74 0.74 0.85 �4.31 0.88 0.98
CODE – – – – – – �4.37 0.82 0.88
ESA 9.49 0.87 0.97 6.85 0.85 0.96 �4.31 0.88 1.02
JPL – – – 6.65 0.65 0.74 – – –
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days, from July 4 to 19, 2009 (DoY 185–200), the iono-
spheric activity is relatively quiet during this period. The
second part was extracted from March 9, 2012 (DoY 69),
on this day a geomagnetic storm was observed. The GPS
reference station distribution is shown in Fig. 3. The height
of the single-layer model was set to 450 km as well as the
mean radius of the Earth was set to 6371 km for calcula-
tions. A sampling rate of 30 s and an elevation cut-off angle
of 10� were used. The precise ephemeris was obtained from
IGS. In order to compare the estimated ionospheric VTEC



Table 8
The mean positioning errors on days from DoY 185 to 200 in 2009 (m).

dX dY dZ dD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dX 2 þ dY 2 þ dZ2

p
Proposed Mean 0.253 0.301 0.186 0.530
IGS Mean 0.402 0.977 0.146 1.116

Table 9
The positioning errors on DoY 69 in 2012 (m).

dX dY dZ dD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dX 2 þ dY 2 þ dZ2

p
Proposed 0.119 �0.565 �0.161 0.599
IGS �1.798 1.598 �0.345 2.430

S.-P. Kao et al. / Advances in Space Research 53 (2014) 190–200 199
of the proposed method with IGS GIM, this study
estimated a set of solutions for 24-h daily data at an inter-
val of every 2 h.

Fig. 4 shows the number of basis functions for the esti-
mated MARS models for each dataset on days from DoY
185 to 200 in 2009. The number of basis functions for each
dataset is between 10 and 18. Fig. 5 shows the RMS of
residuals for the estimated models for each dataset on days
from DoY 185 to 200 in 2009. The large RMS occurs at
0400–1200UT (local time: UT+08). This time interval is
just when the VTEC in Taiwan is large. Table 1 shows
the mean and standard deviation (std) for the RMS of
residuals for the estimated models for each interval during
16 experiment days. The mean RMS in each time interval
was less than 2 TECU, and the std was less than 0.4 TECU.
Table 2 shows the daily mean and std for the RMS of resid-
uals for the estimated models. The mean RMS on various
experiment days was less than 1.5 TECU, and the std was
less than 0.5 TECU. Table 3 shows the number of basis
functions and the RMS of residuals for the estimated mod-
els for each interval on DoY 69 in 2012. The basis func-
tions for each dataset are between 12 and 16 and the
maximum and minimum values for the RMS are
8.22 TECU and 1.42 TECU, respectively. It is noted that
the residuals described in this paragraph is calculated from
Eq. (15).

Fig. 6 shows the daily RDCB estimate results at various
reference stations. Fig. 6 shows a consistent trend in varia-
tion in the RDCB for eight reference stations. As YMSM
cannot obtain GPS observations on DoY 187 and TWTF
cannot obtain GPS observations on DoY 192, they fail
to estimate RDCB. Table 4 shows the mean and std for
daily RDCB estimates at various reference stations during
16 experiment days. The std for eight reference stations is
less than 0.6 ns, meaning the aforesaid RDCB is quite sta-
ble with slight day-to-day variations during the experiment
days. Table 5 shows the RDCB estimates on DoY 69 in
2012.

Fig. 7 and Table 6 compare IGS, CODE, ESA, JPL with
TCMS, TNML and TWTF estimates of RDCB with the
method proposed in this study on days from DoY 185 to
200 in 2009. Fig. 7 shows that the daily RDCB estimates
from the method proposed in this study and the four
institutions have similar variation trends. Table 6 shows
that the mean and RMS for the differences between the
method proposed in this study and the four institutions
are almost less 0.9 ns and 1.0 ns, respectively. Table 7 com-
pares IGS, CODE, ESA, JPL with TCMS, TNML and
TWTF estimates of RDCB with the method proposed in
this study on DoY 69 in 2012. Table 7 shows that the dif-
ferences between the method proposed in this study and the
four institutions are less 0.6 ns.

The IGS global ionosphere map (GIM) and the regional
ionospheric VTEC model were estimated using the pro-
posed method for GPS single-frequency precise point posi-
tioning (PPP) to further analyze ionospheric VTEC model
accuracy. The PPP was implemented based on GpsTools
ver. 0.6.4, developed by T. Takasu. The phase-smoothed
code was used for positioning with a sample rate of 30 s
and an elevation cut-off angle of 15�. TCMS was used as
the reference station and the weekly geocentric coordinates
from SINEX files published by IGS were used as reference
values. A set of solutions were estimated every day to
obtain the positioning errors. Fig. 8 and Table 8 compare
the absolute values and the mean positioning errors on
days from DoY 185 to 200 in 2009, respectively. Table 9
compares the positioning errors on DoY 69 in 2012. Tables
8 and 9 show that the regional ionospheric VTEC model
estimated using the proposed method has better position-
ing accuracy. Its three-dimensional positioning errors of
0.530 m on days from DoY 185 to 200 in 2009 and
0.599 m on DoY 69 in 2012 are better than 1.116 m and
2.430 m of IGS GIM model, respectively.
5. Conclusion

This study proposed a statistical learning-based method
to estimate the regional 2-D ionospheric VTEC and RDCB
simultaneously in Taiwan. The MARS was used in this
method to develop an ionospheric VTEC approximate
model from ground GPS reference station observations
first. The least squares method was then used to simulta-
neously estimate the RDCB and the coefficients of iono-
spheric VTEC model. Compared to conventional
function-based methods, such as polynomial functions,
Taylor series and Spherical Harmonics, the proposed
method can find the optimal approximate model flexibly
and adaptively from the observations using MARS without
a priori knowledge of the ionospheric VTEC distribution
mathematical function. We tested the proposed method
in this paper under different ionospheric conditions. The
research findings showed that the proposed method has
good modeling effectiveness and can solve the ionospheric
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VTEC and RDCB simultaneously based on statistical
learning techniques. The results showed that the estimated
RDCB has a good reliability. The estimated ionospheric
VTEC model applied to GPS single-frequency precise point
positioning gives better positioning accuracy than using
IGS GIM. Therefore, this method can serve as an attrac-
tive and alternative method for estimating 2-D ionospheric
VTEC and RDCB. However, this method was first pro-
posed and tested using regional observations in Taiwan.
The proposed method’s suitability for modeling global or
single-station ionosphere TEC distributions will be studied
in future studies.
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