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INVESTIGATION ON THE AERODYNAMIC INSTABILITY OF A

SUSPENSION BRIDGE WITH A HEXAGONAL CROSS-SECTION

Fuh-Min Fang*, Yi-Chao Li, Tsung-Chi Liang, and Chu-Chang Chen

ABSTRACT

The aerodynamic instability of a suspension bridge with a hexagonal cross-sec-
tion is investigated systematically based on a two-dimensional model.  Measurements
of the dynamic responses of a sectional bridge model in the cross-wind and torsional
directions were firstly carried out in a wind tunnel.  The results were used to guide
and confirm the execution of parallel numerical simulations.  Accordingly, both the
experimental and numerical results are used as bases to examine the flow effect as
well as the aeroelastic behavior of the bridge in detail.

Results show that the numerical predictions of the structural responses agree
well with those from the experiments, indicating that the proposed numerical method
is capable of predicting the deck motion with good accuracy.  Based on the time-
series numerical results, extensive investigations reveal that a hexagonal deck has
much better aerodynamic stability performance than a rectangular one.  Finally, among
the hexagonal decks studied, it is found that one with a 30° side angle leads to the
greatest critical flutter speed.
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I. INTRODUCTION

The aerodynamic instability of a suspension
bridge is generally a major concern in design since a
long-span structure is most sensitive to wind.
Physically, when wind passes the bridge, which usu-
ally possesses a blunt shape, vortex shedding occurs
and causes unsteady wind load on the structure.  As
the extent of the resulting bridge vibration is
significant, it can further affect the surrounding flow
and promote a structural response.  Therefore, the
analysis of the interaction between the structure mo-
tion and the wind flow become important.  In order
to investigate the dynamics of the bridge as well as
the corresponding wind effects, the method of model
experiments is commonly used.  Economically,

however, the application of appropriate numerical
methods can be another option.  Besides, the numeri-
cal results can provide more extensive information
for the analysis of flow-structure interactive problems.

A number of researchers have investigated,
experimentally, the mechanisms of wind-induced vi-
bration of suspension bridges.  Typically, Scanlan and
Tomko (1971) proposed a semi-experimental and semi-
analytical approach regarding flutter derivatives, and
this approach is presently widely used.  Sarkar et al.
(1992) suggested a system identification procedure
to estimate all the flutter derivatives simultaneously.
In their study, numerical simulations and reduction
of the experimentally-obtained direct derivatives were
presented.  Iwamoto and Fujino (1995) proposed a
method of simultaneous identification of all eight
flutter derivatives of bridge decks from free-vibra-
tion data.  They showed, by experiments, that an in-
crease of mass and inertial moment of a section model
lead to better accuracy in identifying the flutter de-
rivatives at high wind speeds.  Additionally, based
on the experimental results from a coupled vertical-
torsional free vibration of a spring-suspended section
model, Gu et al. (2000) employed a least-square theory
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and proposed an identification method to obtain
flutter derivatives.  Moreover, Noda et al. (2003)
evaluated the flutter derivatives of thin rectangular
cylinders and found that the effect of oscillation am-
plitudes could be significant.

Besides wind tunnel model tests, the method of
computational fluid dynamics (CFD) has also been
used to examine the aerodynamic performance and
aeroelastic stability of long-span bridges.  Kuroda
(1997) presented a numerical simulation of high-
Reynolds-number flows past a fixed section model
with a shallow hexagonal cross-section.  The overall
characteristics of measured static force coefficients
were well captured by the computations. Lee et al.
(1997) investigated, numerically, the wind loading char-
acteristics for turbulent flows over a two-dimensional
bridge deck cross-section.  The two-dimensional flow
results were further used to perform three-dimensional
dynamic structural analyses on a non-interactive basis.
Fang et al. (2001) proposed a numerical method to
simulate the surrounding wind flow and to predict the
corresponding dynamic responses of a bridge deck
with a rectangular cross-section.  By employing a
partially interactive procedure, the dynamic responses
of the deck agreed well with the measurement results
in a case where torsional responses were relatively
insignificant.  Furthermore, improvements were made
successfully by Fang et al. (2005) to analyze the mo-
tion of a bridge with a trapezoidal cross-section based
on a completely interactive procedure.

In summary, the analytical approach proposed
by Scanlan and Tomko (1971) in terms of flutter de-
rivatives provides a method of extensive examination
of bridge instability in two-dimensions.  Based on this
approach, Sarkar et al. (1992), Iwamoto and Fujino
(1995), Gu et al. (2000) and Noda et al. (2003) ex-
tend the concept into practical bridge instability
analyses.  Since all these studies were carried out by
wind tunnel tests, the analyses were limited to cer-
tain selected variables that could technically be
measured.  Regarding the before-mentioned numeri-
cal studies, on the other hand, most of them concen-
trated on the flow effects of bridge decks.  Not much
emphasis was put on the interaction between the be-
havior of the vibrating deck and the surrounding flow.
To examine the dynamics involved, it is attempted in
this study to analyze the bridge instability problem
by using both the methods of wind tunnel measure-
ments and numerical simulations, which allow for
investigations on the interaction mechanism in more
detail.

II. PROBLEM DESCRIPTION

In the study, a numerical model is proposed to
simulate the dynamic response of a suspended bridge

in a two-dimensional sense.  Particularly, a bridge
deck with a hexagonal cross-section is assessed.  In
the numerical computations, two sets of equations,
one for the simulation of the unsteady surrounding
turbulent flow and the other for the calculation of the
vibrating motions of the bridge deck, are solved al-
ternately to reflect the interaction effect between the
structure and the flow.  The resulting time-series re-
sponses of the structure as well as the wind loads are
analyzed to examine the dynamic behaviors of the
two.  To verify the accuracy of the numerical results,
additional wind tunnel experiments were conducted
on a sectional deck model and the results of the ver-
tical and torsional motions of the deck were used to
confirm the numerical predictions.  Finally, both the
experimental and numerical results are used to ex-
amine the flow effect as well as the aeroelastic be-
havior of the bridge in detail.

Figure 1 depicts the schematic of the problem.
At five selected attack angles (β = 0°, ±4° and ±8°),
the approaching flow is considered smooth with a
speed (Uo) varying from 2 to about 48 m/s in the nu-
merical predictions and 2 to about 20 m/s in the model
experiments.  The mass distribution of the bridge
cross-section is assumed uniform so that the effect
due to eccentricity is not of concern.  The hexagonal
bridge cross-section is symmetric to the centroid with
four side angles (θ = 30°, 60°, 90° and 180°), corre-
sponding respectively to a total deck width (B′) vary-
ing from 13.73 to 8.00 times of the deck thickness
(D).  It is noted that the widths of the upper surfaces
(B) in all the deck selections were kept the same (8D)
to provide a consistent basis for the comparison of
the aerodynamic performance among the decks.
Particularly, as θ equals to 180°, the shape of the deck
cross-section becomes a rectangle.  Other related prop-
erties of the bridge decks are illustrated in Table 1.

III. NUMERICAL METHOD

The simulations contain two separate computa-
tions which are performed according to an interac-
tive procedure.  To predict the unsteady turbulent flow
around the deck, a weakly-compressible-flow method

Fig. 1  Sketch of problem
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(Song and Yuan, 1988) together with a dynamic
subgrid-scale turbulence model (Germano et al.,
1991) is applied.  After an instantaneous flow field is
simulated, the resulting pressure distribution on the
deck surfaces is integrated to obtain the wind load,
which is taken as an input to further compute the cor-
responding structure responses.  The resulting deflec-
tions and the vibrating speeds of the deck are then
fed back to the boundary specifications of the deck
surfaces for the flow calculations in the following
time step.  The alternative solutions of the instanta-
neous flow field and the deck motions in time series
are considered the results of the interactive dynamic
behaviors of the two.

1. Flow Calculations

In the weakly-compressible-flow method (Song
and Yuan, 1988), the continuity and momentum equa-
tions are

∂p
∂t

+ k∇ ⋅ V = 0 , (1)

∂V
∂t

+ V ⋅ ∇ V = – ∇ p
ρ + ∇ ⋅ [(ν + ν t)∇ V] , (2)

where p, V and t denote respectively pressure, veloc-
ity and time; k is the bulk modulus of elasticity of
air; ν and ν t are respectively the laminar and turbu-
lent viscosities.  The turbulent viscosity (νt) is deter-
mined based on a subgrid-scale turbulence model as

ν t = CS∆
2(

Sij
2

2 )0.5 , (3)

where CS is the Smagorinsky coefficient; ∆ denotes
the characteristic length of the computational grid and

Sij = (
∂u j

∂xi
+

∂ui

∂xj
).  Based on a concept of dynamic model

proposed by Germano et al. (1991), two grid systems,
corresponding respectively to a grid filter and a test
filter, were used in the flow calculations.  By com-
paring the resulting differential turbulent shear
stresses associated with the two filter systems at a
certain time step in the computation, the CS value at
the next time step is then obtained.

Equations (1) and (2) are further transformed
into a coordinate system which goes with the motions
of the bridge deck. Accordingly, as the coordinate
systems are related by

X = x cosα + y sinα
Y = y cosα – x sinα – yVdt

, (4)

where (X, Y) and (x, y) are the spatial coordinates as-
sociated respectively with the new (moving) and
the original (fixed) coordinate systems; yV and α
denote the vertical and torsional deflections of the
deck;  

.
yV,  

.α , are respectively the corresponding vi-
bration speeds in the vertical (across-wind) and tor-
sional directions, Eqs. (1) and (2) become

∂p
∂t

+ k[( ∂u
∂X

+ ∂v
∂Y

)cosα + ( ∂u
∂Y

– ∂v
∂X

)sinα]

+
∂p
∂X

( – αxsinα – αycosα)

+
∂p
∂Y

( – αysinα + αxcosα – yV) = 0 , (5)

X-direction:

∂u
∂t + (u ∂u

∂X
+ v∂u

∂Y
)cosα + (u ∂u

∂Y
– v ∂u

∂X
)sinα

+ [ ∂u
∂X

(– αxsinα – αycosα)

+ ∂u
∂Y

( – αysinα + αxcosα – yV)]

= – [
∂p
∂X

cosα +
∂p
∂Y

sinα] + (ν + ν t)(
∂2u
∂X2 + ∂2u

∂Y 2 )

(6a)

Y-direction:

∂v
∂t

+ (u ∂v
∂X

+ v ∂v
∂Y

)cosα + (u ∂v
∂Y

– v ∂v
∂X

)sinα

+ [ ∂v
∂X

(– αxsinα – αycosα)

+ ∂v
∂Y

(– αysinα + αxcosα – yV)]

= – [
∂p
∂X

(– sinα) +
∂p
∂Y

cosα] + (ν + ν t)(
∂2v
∂X2 + ∂2v

∂Y 2 ) .

(6b)

Table 1  Related properties of present section model

Side Aspect Momentum Fundamental frequency (Hz) Damping ratio (%)
Mass (M)angle ratio of inertia (I) Vertical Torsional Frequency Vertical Torsional

(kg/m)
(θ) (B’/D) (kg-m2/m) (fV) (fT) ratio (ε) (ξV) (ξT)

180°   8.00 3.785 1.29 × 10−2 9.86 20.53 2.08 0.54 0.77
  90°   9.00 4.106 1.51 × 10−2 9.06 18.95 2.09 0.58 0.72
  60°   9.73 3.861 1.31 × 10−2 9.74 20.62 2.12 0.58 0.72
  30° 11.73 3.873 1.30 × 10−2 9.67 20.59 2.13 0.58 0.81
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Based on Eqs. (5) and (6), the computation of
the flow proceeds according to a finite-volume ap-
proach with an explicit finite-difference scheme.  To
ensure numerical stability, the time increment in the
unsteady calculations is limited by the Courant-
Friedrich-Lewy criterion (Courant et al., 1967).

In the flow calculations, appropriate values of
pressures and velocities are specified at exterior
(phantom) grids outside the boundaries of the com-
putational domain to reflect the physical nature of the
boundaries.  For the velocity specifications, since the
computation is based on a non-stationary coordinate
system, the boundary specifications at the deck sur-
faces have to account for the effect due to the instan-
taneous motion of the bridge deck.  At the upstream
inlet boundary, a smooth and uniform velocity pro-
file together with an additional velocity caused by
the coordinate transformations is imposed.  At the other
penetrable boundaries (side and exit boundaries of the
flow domain), zero-gradient boundary specifications
with a similar treatment due to the coordinate trans-
formations are adopted.  For the pressure specifications,
on the other hand, the average pressure at the down-
stream section of the flow domain is chosen as the
reference pressure.  At the other penetrable and solid
boundaries, the values at the phantom cells are given
according to a zero-gradient assumption in the direc-
tion normal to the boundaries.

In all cases, the domain of flow calculations is
in a rectangular shape (50D ×30 D with a grid size of
139 × 81; see a typical mesh system in Fig. 2).  The
distances between the deck and the inlet as well as
the exit are respectively 14D and 28D, and a space of
14.5D is set between the deck and the side bound-
aries of the flow domain.  By using these selections,
preliminary numerical tests have shown that the rela-
tive error of the computational results is less than 3%.

2. Calculation of Bridge Responses

In the computations of the deck motions, the
dynamic equations in the vertical (across-wind) and
torsional directions are respectively

yV + 2ξ VωVyV + ωV
2yV =

FL
M , (7)

α + 2ξ TωTα + ωT
2α =

FM
I , (8)

where 
..
yV and

 ..α  are the accelerations; M and I denote
the mass and moment of inertia of the deck cross-
section; FL and FM, obtained from the results of flow
calculations, are respectively the instantaneous wind
loads in the across-wind and torsional directions; ξ’s
and ω’s are the damping ratios and circular frequen-
cies of the deck.

3. Flutter Derivatives

For a 2-degree-of-freedom bridge deck, the lift
and moment loads exerted on an oscillating bridge
section induced by the vertical and torsional motions
are given by the following equations (Scanlan and
Tomko, 1971)

(FL) I = ρU2B[KH1
* yV

U + KH2
* Bα

U + K2H3
*α

+ K2H4
* yV

B ] , (9)

(FM) I = ρU2B2[KA1
* yV

U + KA2
* Bα

U + K2A3
*α

+ K2A4
* yV

B ] , (10)

where K = 2πfVB/U; B is the deck width; H j
* and Aj

* (j
= 1 to 4) are the flutter derivatives.

Based on the time-series results of the numeri-
cal calculations, the flutter derivatives are obtained
by the logarithmic-decrement method (Scanlan and
Tomko, 1971) in the study.  In addition, the initial
vertical and torsional amplitudes of the bridge deck
are selected respectively as 0.25D and 1.3°, which
are considered reasonably small to avoid the ampli-
tude effects (Noda et al., 2003).

IV. EXPERIMENTAL PROGRAM

A sectional deck model is installed on a sus-
pended rack mechanism (see Fig. 3) in the test sec-
tion (80 cm ×80 cm) of a wind tunnel.  The turbu-
lence level (intensity) of the approaching flows in the
tests is less than 0.5%.  The thickness (D) of the deck
model is 0.04 m, corresponding to a blockage ratio
of 5%.  An additional energy absorber, filled with a
viscous liquid, is set to produce appropriate damping
in the vertical and torsional directions.  Hot-film an-
emometry is used to measure the approaching flow
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Fig. 2 Typical mesh system and domain of flow computations (θ
= 90°)
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speed.  Moreover, four laser transducers are set on
the rack mechanism to monitor the motion of the vi-
brating model deck.  Other related physical quanti-
ties are illustrated in Table 1.

V. RESULTS

1. Verification of the Numerical Method

Available data from three wind tunnel measure-
ments are selected and compared with the results from
the numerical predictions.  Among the selected cases,
Case 1 is associated with a rectangular deck shape
(Noda et al., 2003); Cases 2 (Gu et al., 2000) and 3
(Iwamoto and Fujino, 1995) are hexagonal cross-sec-
tions (see Table 2 for deck properties).

Compared to the experimental results from Noda
et al. (2003), Figs. 4 show the calculated variations

Fig. 3  Setup of section model experiments
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Fig. 4  Comparisons of mean force coefficients

Table 2  Related properties of other experiments

Fundamental Damping ratio
Mass (M) Moment of inertia (I) frequency (Hz) (%)

(kg/m) (kg-m2/m) Vertical Torsional Vertical Torsional
(fV) (fT) (ξ V) (ξ T)

Case 1*   4.01 (Noda et al., 2003) 0.0706 10.31 29.7 0.81 0.66
Case 2**   4.19 (Gu et al., 2000) 0.0612 2.55 5.06 1.72 1.82
Case 3*** 11.93 (Iwamoto & Fujino, 1995) 0.091 1.875 3.624 0.5 0.4
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of normalized mean force coefficients with respect
to the attack angles (

–
CL =  

–
FL /ρU2B and  

–
CM =  

–
FM /

ρU2B2;  
–
FL and  

–
FM are respectively the mean wind

loads in the across-wind and torsional directions).
Figs. 5 illustrate the comparisons of the normalized
mean and root-mean-square pressure distributions on
the upper surface of the rectangular deck (

–
Cp =

(p – po)/(0.5 ρU2) and Cp′  = p′ /(0.5 ρU2); po is the
approaching-flow pressure and p′  is the root-mean-
square value of local pressure).  Additionally, Fig. 6
depict the comparisons of the variations of flutter
derivatives.  All the results reveal that the flow ef-
fect and the resulting deck motions are well predicted.

Considering the onset of flutter, on the other
hand, Table 3 shows that the predicted critical flutter

speeds (Ucr) are in good agreement with those from
the experiments (Gu et al., 2000; Iwamoto and Fujino,
1995), indicating that the proposed numerical method
is capable of predicting the deck motions with good
accuracy.

2. Deck Responses

Based on the results of present wind tunnel mea-
surements and numerical predictions, Figs. 7 to 10
show the resulting root-mean-square values of the
vertical and torsional deck deflections at various ap-
proaching wind speeds.  In the figures, the variations
of the normalized deflections are presented in terms
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Fig. 5 Comparisons of mean and root-mean-square pressure co-
efficients
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Table 3  Comparisons of the critical flutter speed

Critical flutter speed (m/s)
Relative error (%)

Experimental Calculated

Case 2 (Gu et al., 2000) 19.5 19.65 0.8
Case 3 (Iwamoto & Fujino, 1995) 16.5 16.65 0.9
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of the reduced velocities associated with the funda-
mental deck frequency in the across-wind direction
(Ur = U/(fVB)).  It can be seen that good agreements
between the sets of measurement results and numeri-
cal predictions are obtained.

Generally, the root-mean-square deflections in both
directions increase as the wind speed (or the reduced
velocity) increases, except when two resonances occur,
leading to the occurrence of local peak values.  As the
results of the rectangular deck (β = 180°; Fig. 7) are
examined, for example, situations where Ur reaches
0.99 and 2.11 correspond to the cases where shedding
frequency coincides with the deck fundamental fre-
quencies respectively in the vertical and torsional
directions.  To avoid damage of the deck model,
unfortunately, the wind speed in the experiments is
limited to about 20 m/s (Ur = 7).  The numerical results,
however, show that the normalized root-mean-square
deflections increase dramatically as the reduced ve-
locity exceeds about 13.  Above this speed, numerical
predictions show that the fluctuating responses in both

Fig. 10  Comparisons of root-mean-square deflections (θ = 30°)
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directions diverge, indicating the occurrence of flutter.
Moreover, among all the cases with different attack
angles, the one corresponding to the largest β value
(±8°) results in the greatest extent of fluctuating de-
flections in both the vertical and torsional directions.

Comparing to those of the rectangular deck, the
variations of the root-mean-square deflections of the
three hexagonal decks (see Figs. 8 to 10) have a similar
tendency.  However, the magnitudes of the fluctuating
deflections are relatively smaller.  The case when β
equals ±8° still leads to the greatest normalized root-
mean-square responses, and when β is equal to 0° the
responses are the least.  Furthermore, divergence of de-
flection fluctuations of the three hexagonal decks oc-
curs apparently at larger wind speeds than that of the
rectangular deck, and the normalized critical flutter speed
(Vcr = Ucr/(fvB)) increases with a decrease of θ.

3. Aerodynamic Damping

Based on the numerical results, Figs. 11 to 14
show the variations of the net damping ratios at vari-
ous approaching wind speeds.  In the case of the rect-
angular deck (see Fig. 11), typically, the variations
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Fig. 11 Calculated net damping ratios at various wind speeds (θ =
180°)
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of the ratios in the across-wind direction start from
the value of the material damping (0.54%) then in-
crease monotonically with an increase in wind speed.
Also, the effect due to the change of β appears

insignificant.  In the torsional direction, in contrast,
the variation pattern of the net damping ratios appears
rather different.  The damping ratio starts with the
material damping value (0.77%) and increases with
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an increase in wind speed until Ur is about 2.  After
reaching a peak value, the ratio then decreases.  As
the reduced velocity exceeds 11.13, the net damping
ratios become less than the material damping (0.77%).
Finally, the ratio drops to a zero value as Ur ap-
proaches about 13.  It is noticed that although the case
where β = ±8° leads to the largest net damping ratios
within a major portion of the wind speed range, the
resulting normalized wind speeds corresponding to
a zero net damping ratio (or the normalized critical
flutter speed, Vcr) appear insensitive to the change of
β.

For the three hexagonal decks, Figs. 12 to 14
illustrate similar tendencies of variation in the net
damping ratios.  In the across-wind direction, again,
the net damping ratios increase monotonically with
an increase in wind speed and the effect of β is mild.
In the torsional direction, on the other hand, similar
tendencies of the variations of the net damping ratios
are found, except that the normalized flutter speeds
are apparently greater than that of the rectangular
deck.  Besides, a smaller θ value results in a larger
critical flutter speed or better aerodynamic stability
performance of the deck.

4. Flutter Derivatives

Figures 15 to 18 show the variations of the flut-
ter derivatives of all the deck cases with a zero attack
angle (β = 0°).  It can be seen that those related to the
aeroelastic forces in the across-wind direction (H *

1 to
H *

4) are all negative (Figs. 15a to 18a) within the wind
speed range.  In the torsional direction, on the other
hand, all related derivatives are positive except the
one associated with the torsional speed (A*

2), which
is initially negative at lower wind speeds then be-
comes positive as Ur exceeds 11.13, 12.72, 13.68 and
14.53, corresponding to cases where θ equals 180°,
90°, 60° and 30° respectively (Figs. 15b to 18b).

5. Critical Flutter Speeds

As the onset of flutter is initiated when the net
damping ratio becomes zero, the critical flutter speed
can be accurately evaluated based on the numerical
results from Figs. 11b to 14b.  Table 4 illustrates the
resulting normalized critical flutter speeds (Vcr).  It
shows that in all four deck cases, the change of the
attack angle (β) has a mild effect on the resulting Vcr
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Fig. 15 Calculated flutter derivatives at various wind speeds (θ =
180°, β = 0°)

Fig. 16 Calculated flutter derivatives at various wind speeds (θ =
90°, β = 0°)
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values.  However, the effect due to the change of θ
appears significant.  In particular, when θ changes
from 180° (rectangular) to 90° (hexagonal), the nor-
malized critical flutter speed increases from about
13.3 to 15.5 (about 16%), indicating a significant im-
provement of the deck stability.  For the three hex-
agonal deck cases, on the other hand, a decrease of θ
also leads to an increase of the Vcr value but to a rela-
tively milder extent.

VI. DISCUSSION

1. Applicability and Validity of the Numerical
Method

As the results from the measurements are treated
as prototype data for verification, the application of
the proposed numerical method has been proved to
be quite successful in predicting the dynamic behav-
iors of the deck and the surrounding flow, which are
actually interacting with each other. The variations
of the root-mean-square deflections of hexagonal
decks are well predicted (Figs. 4 to 7), even when
resonance and flutter occur. Based on the numerical
results, moreover, other important features associated

with the deck motion, such as the variations of the
net damping ratios and flutter derivatives as well as
the critical flutter speeds, are obtained to help with
the analysis of the interactive behavior between the
motions of the structure and the surrounding flow.

As the present numerical method is applied to
simulate the flow around the rectangular deck in the
work of Noda et al. (2003), Fig. 5b illustrates that the
surface root-mean-square pressure distribution is well
simulated.  However, some deviation of mean pres-
sure is detected (Fig. 5a) in the region near the deck
leading edge, where separation occurs.  This incon-
sistency is considered owing to the error of turbulence
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Fig. 17 Calculated flutter derivatives at various wind speeds (θ =
60°, β = 0°)
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Fig. 18 Calculated flutter derivatives at various wind speeds (θ =
30°, β = 0°)

Table 4 Comparison of the normalized critical
flutter speed

θ
180° 90° 60° 30°β

  0° 13.28 15.44 15.73 16.45
±4° 13.34 15.49 15.79 16.51
±8° 13.41 15.52 15.87 16.62
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modeling.  As the discrepancy covers solely a minor
portion of the deck width, on the other hand, the good
agreements in terms of the flutter derivatives (Fig. 6),
critical flutter speed (Table 3) and root-mean-square
deck deflections (Figs. 7 to 10) in various deck cases
indicate that the validity of the present numerical method
is acceptable in predicting the dynamics of the problem.

2. Advantage of Applying Numerical Computation

It commonly occurs in wind tunnel tests that the
onset of flutter is sensitive to a gradual increase of
the wind speed as the approaching flow velocity is
near the critical flutter speed.  In the present study,
therefore, the wind speed is limited to about 20 m/s
to avoid damage to the deck model.  On the other
hand, there is no such limitation when the numerical
computation is performed.  As long as the correct-
ness of the present numerical methods is verified,
which has just been discussed, the predicted struc-
tural responses can provide supplemental data, which
allow for extensive examinations of the dynamic
mechanism of the vibrating deck.

3. Mechanism of Deck Instability

In the present deck cases, the mechanism of the
occurrence of flutter can be explored by examining the
variations of the net damping ratios.  Figs. 11a to 14a
show that the resulting net damping ratio in the verti-
cal (across-wind) mode is always larger than that of
the material damping, revealing that the induced posi-
tive aerodynamic damping ratio due to the deck mo-
tion tends to suppress the vertical structure response.
This evidence can also be detected by examining the
corresponding H*

1 results (see Figs. 15a to 18a).  As H*
1

is associated with the vertical vibrating speed (
.
yv) of

the deck, it represents the part of aeroelastic damping
force induced by the vertical speed of the deck motion.
Since H*

1 is negative throughout the entire wind speed
range, the resulting negative aeroelastic force then in-
dicates a decrease of the total vertical force and also a
decrease of the deck response in the vertical direction.
Moreover, as this negative induced damping force can
be represented in a form of (ca

.
yV; ca denotes the aero-

dynamic damping ratio) and is moved to the left-hand-
side of the dynamic equation of the vertical deck motion,
it ends up with an increase of the total damping ratio.
The outcome of the deduction from the results in Figs.
15a to 18a agrees with those shown in Figs. 11a to 14a.

By examining the results from Figs. 15b to 18b,
on the other hand, it can be seen that the net damping
ratios in the rotational (torsional) mode drop to zero
at the critical flutter speeds.  Accordingly, one can
then conclude that although the fluctuating responses
diverge in both directions at the critical flutter speeds

(Figs. 7 to 10), the instability of all the decks is in
reality subject to torsional flutter.  It is also noted
that when the net torsional damping ratio becomes
identical to that of the material damping (Figs. 7b to
10b), A*

2 changes its sign (Figs. 15b to 18b).  All these
evidences can be clearly found by investigating the
results from the numerical computations.

4. Effect of Side Angles

Finally, the reason why a decrease of θ tends to
improve the aerodynamic instability of the deck can
be found by investigating the surrounding flow
behavior.  Based on the numerical results, Figs. 19
and 20 show the mean flow streamlines around a fixed

Fig. 19 Calculated mean streamline patterns of fixed decks (β =
0°)
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deck with various θ values typically when the attack
angle (β) is equal to 0° and 8°.  In the cases of a zero
attack angle (see Fig. 19), one can see that as θ de-
creases the size of the re-circulating flow near the
deck surfaces tends to diminish.  When β is equal to
8°, although separation bubbles are produced on one
(lower) side of the deck, a similar tendency is ob-
tained (see Fig. 20).  Physically, the area of the sepa-
ration bubble in the mean flow indicates the region
of instantaneous unsteady flow.  Accordingly, as the
side angle (θ) decreases, the shape of the deck be-
comes more streamwise, leading to a decrease of the
extent of flow unsteadiness.  Consequently, the re-
sulting fluctuating wind forces also decrease (see Table
5) and lead to less significant structure responses.

5. Comparison of Deck Instability

Among the cases in the present study, it is shown
in Table 4 that the resulting normalized critical flut-
ter speed (Vcr), indicative of the onset of torsional
divergence, increases with a decrease of the side angle
(θ) at all the attack angles.  It is important to point
out that the case with a zero side angle corresponds
to a rectangular deck, whose critical flutter speed is
apparently lower (about 16%) than those in the three
hexagonal deck cases.  This implies that a hexagonal
deck generally possesses much better stability per-
formance than a rectangular one.  On the other hand,
as θ decreases from 90° to 30° in the three hexagonal
deck cases, the critical flutter speed decreases about
7% (also see Table 4).  This reveals that a decrease
of the side angle (θ) tends to improve the deck insta-
bility but to a relatively milder extent.

VII. CONCLUSIONS

The interaction between a suspension bridge
with a hexagonal cross-section and the surrounding
flow has been extensively examined by adopting nu-
merical computations.  After comparison with wind
tunnel results and other available experimental
results, the proposed numerical model has been
proved to be adequate in predicting wind effects as
well as the dynamic behavior of the deck with good
accuracy.  Finally, it is found that a hexagonal deck
possesses much better stability performance than a
rectangular one.  In terms of the critical flutter speed,
the increase can be on the order of 16%.  Moreover,
for a hexagonal deck, a decrease of the side angle (θ)
tends to improve the deck stability but to a relatively
milder extent.

ACKNOWLEDGMENTS

The study is cordially funded by the National
Science Council in Taiwan (grant No. NSC 92-2211-
E-005-028 and NSC 93-2211-E-005-008).

NOMENCLATURE

B width of upper surface of deck

Fig. 20 Calculated mean streamline patterns of fixed decks (β =
8°)

Table 5 Comparison of the calculated root-mean-
square forces and moments

θ
180° 90° 60° 30°β

CL′ 0.1518 0.0793 0.0245 0.0101
0°

CM′ 0.0634 0.0349 0.0129 0.0067

CL′ 0.2207 0.1298 0.0704 0.0419
8°

CM′ 0.1068 0.0546 0.0228 0.0104
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B′ maximum width of deck
ca Aerodynamic damping
 
–
CL,  

–
CM mean lift and moment coefficients

CL′ , CM′ Root-mean-square lift and moment
coefficients

 
–
Cp, Cp′ mean and root-mean-square pressure

coefficients
D deck thickness
FL, FM wind loads in the across-wind and tor-

sional directions
fV, fT fundamental frequencies of deck in the

across-wind and torsional directions
Hj

*, Aj
* flutter derivatives

I moment of inertia of deck
K 2πfVB/U
k bulk modulus of elasticity
M mass of deck
p pressure
Uo approaching-flow speed
Ur U/(fVB); reduced velocity
Ucr critical flutter speed
Vcr Ucr /(fVB); normalized critical flutter

speed
u, v velocity components
X, Y moving spatial coordinates
x, y original spatial coordinates
yV deck deflection in the across-wind di-

rection
 
.
yV speed of deck vibration in the across-

wind direction
 
..
yV acceleration of deck vibration in the

across-wind direction
yV′ root-mean-square deck deflection in

the across-wind direction
α deck deflection in the torsional direc-

tion
yV speed of deck vibration in the torsional

direction
 ..α acceleration of deck vibration in the

torsional direction
α ′ root-mean-square deck deflection in

the torsional direction
β attack angle
θ inclined angle of deck side surfaces
ρ fluid density
ωV, ωT circular frequencies
ξV, ξT material damping ratios
(ξV)net, (ξT)net net damping ratios
ν, νt absolute and turbulent viscosities
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