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ABSTRACT 

A constituent model based on the actual distribution of coarse lightweight aggregates in 

hardened concrete is proposed for estimating the elastic modulus of lightweight aggregate in 

hardened concrete. A commercially available program (ANSYS) designed to handle both 

coarse aggregate and mortar matrix as homogeneous isotopic materials was used in this 

investigation in which the spherical coarse aggregate was assumed positioning at the center 

of a concrete cylinder. This model is therefore called the "Central Aggregate Model." The 

numerical model determined the modulus of elasticity of the aggregate based on the equation, 

Ea = f (Em, Ec, and Va), in which Em (modulus of mortar), Ec (modulus of concrete), and Va 

(volume fraction of aggregate) are the principal inputs. This paper presents the basic concept 

of the proposed Central Aggregate Model, test data, and the model’s suitability for evaluating 

the elastic modulus of lightweight aggregate. The Ea equation based on Central Aggregate 

Model is  

Ea = 6.3Ec - 5.1Em - 9.1VaEc + 8.7VaEm. 

Keywords: Elastic modulus, Central Aggregate Model, Concrete, Mortar, Lightweight 
Aggregate 
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RESEARCH SIGNIFICANCE 

Modulus of elasticity of concrete has been considered as a vital factor in designing 

concrete structures. To predict the Ec of lightweight concrete effectively, accurate lightweight 

aggregate E values must first be evaluated. The synthetic lightweight aggregates commonly 

used in concrete construction possess highly porous interiors and relatively dense exteriors. 

The non-homogeneity and anisotropy have made it nearly impossible to determine its 

modulus of elasticity by either a theoretical approach or a directly experimental procedure 

[1-3]. This study indicates the practicability of using the numerical method to evaluate the 

elastic modulus of lightweight aggregate based on the Central Aggregate Model. 

 

INTRODUCTION 

The stress and strain behaviors within a concrete element under loading greatly depend 

on the compatibility of both the mortar and coarse aggregate in terms of their modulus of 

elasticity, Em and Ea respectively. The importance of Ea in this regard is eminent and 

requires sophisticated engineering analyses. Numerous theoretical methods have been 

suggested by authors [4] for the assessment of the modulus of elasticity of an aggregate 

within hardened concrete with the assumption that individual aggregates are homogeneously 

isotropic and firmly in contact with the surrounding mortar matrix. The binding mechanism 

involves complicated stress/strain behaviors along the interfaces between the mortar and 

aggregate particles. Voigt, Reuss, Counto and others proposed parallel connection, series 

connection, and other idealized models to predict the modulus of elasticity of hardened 

concrete, Ec. Conceivably, these assumptions were confined to constant stress/strain modes 

and idealized aggregate configurations such that theoretical numerical solutions could be 

made possible. This idealization may in fact have a profound impact on the calculated stress 

distributions in aggregate and mortar, particularly along the interface areas [5,6]. 
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NUMERICAL ANALYSIS 

This study adopted a numerical method to simulate the stress distribution of the mortar 

and aggregate in concrete. A cylindrical Central Aggregate Model is shown in Fig.1. Using 

the ANSYS program, the E value can be determined from the stress-strain relation curve. The 

stresses are assumed to be linear. Based on the results, the relationship among Ea, Em, Ec and 

Va is obtained. 

Verifying the reliability of numerical calculation 

The Desize, Lesize and Smartsize mesh methods in the ANSYS program were used to 

test the reliability of the numerical calculation. A cylindrical concrete model encompassing a 

single aggregate type (shown in Fig.1) was analyzed using the Solid Element. The specimen 

size was 50φ ×50 mm with a spherical aggregate 40 mm in diameter. The E values were 

assumed to be Ea = 10 GPa, Em = 40 GPa. The Poisson’s ratios (ν) for the aggregate and 

mortar were both 0.18. After applying an axial load of 10 MPa to the concrete model, the 

axial deformation and stress were calculated.  

The convergence from the above three mesh methods is shown in Fig. 2. In the total 

node number and concrete axial deformation comparison, it was found that the Desize mesh 

method produced the least number of nodes, about 500. Axial deformation convergence 

appeared. In the Lesize mesh method, the number of nodes was about 700 when the axial 

deformation converged. In the Smartsize mesh method, convergence occurred within 200 

nodes. These results indicate that a fewer number of nodes were required for the Smartsize 

mesh method to reach axial deformation convergence. From the deformation aspect, this is 

considered the ideal mesh method. 

From the relationship between the total number of nodes and the maximum principal 

aggregate stress (refer to Fig. 2), it is shown that the principal aggregate stress in the Desize 
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method starts to converge when the total number of nodes reaches about 3300. About 2800 

nodes are required for the Lesize mode and about 800 nodes for the Smartsize mode. The 

Smartsize mode is the best mesh method. 

From the relationship between total number of nodes and the maximum principal mortar 

stress (refer to Fig. 2), the Desize mode converges when the total number of nodes reaches 

about 3300. In the Lesize mode, although there is a variation in the principal mortar stress, 

the stress becomes stable and starts to converge when the total number of nodes reaches 

about 2800. In the Smartsize mode, convergence does not begin until the total number of 

nodes reaches 800. Comparing the convergence analysis results for the Smartsize and the 

other two modes, the Smartsize mode will converge at about 2300 nodes. The Smartsize 

method is therefore the most acceptable. The Smartsize method was used in all analysis 

models for this study. 

Comparison of theoretical and numerical solutions of Ec 

To make sure the E value from the numerical analysis is reliable, four theoretical models 

and equations were used for comparison. These models were the Voigt model, Reuss model, 

Popovics model, and Counto model, as shown in Fig. 3. 

The Voigt model assumes that the two materials (aggregate and mortar) are in parallel 

combination. Under load conditions, the strain behavior of the two materials is equal to the 

constant strain mode. If the E values (Ea and Em) are known, the Ec of the composite 

material is calculated from the following equation: 

Ec = VaEa + VmEm            (1) 

To emphasize the difference between the elastic modulus of these two materials, this 

research used Ea = 10 GPa, Em = 40 GPa, ν=0.18, various Va from 10 % to 90 % and every 

10% increment was a set, so there were nine sets for analysis. The Ec values from all sets 

were compared with the results from the theoretical equation shown in Fig. 4. It was found 
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that the Ec values from these two methods were nearly the same. This indicates that the 

numerical model used in the ANSYS program to calculate the Ec value can reach an excellent 

result under the constant strain mode.  

The Reuss model assumes that the two materials are in serial combination. Under load 

conditions, the stress behavior of the two materials is equal to the constant stress mode. If the 

E values (Ea and Em) are known, the Ec of the composite material is calculated using the 

following equation:  

mE
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aE
aV
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cE

+
=             (2) 

The comparison of the Ec values from the numerical analysis and theoretical equation is 

shown in Fig. 4. It indicates that the numerical model in this research has an acceptable result 

under the constant stress mode. 

The Popovics model is the sum of Eq. (1) and (2), the equation can be expressed as: 
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The comparison result (Fig. 4) shows that the maximum error between the numerical 

and theoretical solutions is about 3 %. The reason is that the stress and strain behavior are not 

in the constant stress or constant strain modes. The solutions calculated from the theoretical 

model will be different from those of numerical analysis. 

The composite material model using Counto model assumes a square shaped aggregate 

inside the center of a hexahedron of mortar. If the E values of the two materials are known, 

the Ec of the composite material can be calculated using the following theoretical equation: 
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The comparison between numerical analysis results and the theoretical calculation 
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results is shown in Fig. 4. It was found that, for Em/Ea=4 (a big difference between E values 

of two materials), the error between the numerical solution and the theoretical solution is 

large, especially when Va increases from 20 % to 30 %. There is nearly a 7 % error between 

the numerical and theoretical solutions. The reason is that in the derivation process of the 

theoretical equation, the composite materials in the parallel combination part are assumed to 

have a constant strain mode and the material in the serial combination part are assumed to 

have a constant stress mode. In actual Counto model cases, the stress and strain behavior are 

not in the constant stress or constant strain modes. The binding mechanism involves 

complicated stress/strain behaviors. This can be proven from the Central Aggregate Model. 

The real stress distribution result in the Central Aggregate Model (100φ ×100 mm with a 60 

mm aggregate) is shown in Fig.5. Complicated stress/strain behaviors were involved that did 

not produce a constant stress/strain mode. As Em/Ea=2, the maximum error is about 2 %. It is 

concluded that when the E values of the two materials are close, the composite material in the 

constant stress and constant strain mode assumption becomes more acceptable. 

In summary, the result shows that the concrete model established using the numerical 

method is closer than the theoretical model to the actual concrete stress distribution. 

Effect of poisson’s ratio on Ec 

In real concrete material, the Poisson’s ratio ν varies for different aggregate and mortar. 

The effect on Ec using various aggregate and mortar ν values is shown in Fig. 6. In the 

numerical simulation assumption, Ea, Em is 10 GPa when Va is 35 %. The ν of the mortar is 

0.18 and the ν of the aggregate varies from 0.15 to 0.21 with an increment of 0.01. There are 

seven sets of data. The result in the figure indicates that Ec is hardly affected by the aggregate 

and mortar at different ν values. The deviations caused by different ν values are within 

0.02%.  
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Relation among Ea, Em and Ec 

To establish the relationship among Ea, Em and Ec, this study used Central Aggregate 

Model with Va from 10 % to 50 % and an Em / Ea ratio from 0.3 to 6.0. The results are 

shown in Fig. 7. Changing the size of the concrete model using a fixed aggregate size (10 mm) 

controls the volume fraction of the aggregate (Va). The aggregate is placed in the center of 

the model. In the Em / Ea < 1 (the upper half in the figure) case, when Em / Ea is fixed, 

Ec/Em will increase with increasing Va. When Em / Ea decreases, the difference between Ec 

and Em (or the ratio) becomes bigger. This is because the aggregate is a reinforcing particle. 

The Ec value will increase because of the increase in high E material. This is more obvious as 

Va increases. In the Em / Ea > 1 (the lower half in the figure) case, when Em / Ea is fixed, 

Ec/Em will decrease with increasing Va. When Em / Ea increases, the difference between Ec 

and Em becomes bigger. This is a lightweight aggregate concrete case. The aggregate particle 

is a weak material, and the Ec value will decrease because of the increase in low E material. 

This is also more obvious as Va increases. 

 

Determination of Ea equation 

The numerical results show that Ea, Em and Va are the important factors that affect Ec. 

Changing the Poisson’s ratio of the aggregate and mortar has little effect on Ec. Moreover, 

based on the theoretical equations recommended in the references [4], Va, Ec, and Em should 

be used as the main variables. The equation presented with quadratic polynomial is 

acceptable. Therefore, the complete quadratic polynomial using the 3 variables mentioned 

above was used to precede the Ea regression equation. The function is as follows: 

Ea = f ( Va﹐ Ec﹐ Em﹐ VaEc﹐ VaEm﹐ EcEm﹐ Va2﹐ Ec2﹐ Em2 )   (5) 

The numerical analysis result shown in Fig.7 is regarded as the reference for selecting 

the points used in the function. Referring to the mechanical properties of concrete, this study 
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assumed the 5 Ec values as 10, 15, 20, 25, and 30 GPa. The 7 Em/Ea values are 3.0, 2.0, 1.5, 

1.0, 0.7, 0.5, and 0.4. The 6 Va values are 0.25, 0.3, 0.35, 0.4, 0.45, and 0.5. A total of 210 

sample data sets were acquired. The Shazame program was used to analyze the selected 

sample points. The regression equation can be determined as 

Ea = 1251.2Va + 6.67Ec - 5.4Em - 8.8VaEc + 8.3VaEm - 0.59×10-4EcEm       

- 4479Va2 + 0.25×10-4Ec2 + 0.33×10-4Em2 + 938.6     (6) 

Statistical quantities related to the regressed relationship are illustrated in Table 1, in 

which the values of the standard error, T-ratio and P represent the error, significance and the 

extent of data concentration, respectively. It can be seen that the coefficients associated with 

the Va and Va2 terms correspond to extremely large standard errors, less significance and a 

worse data concentration in the regression. Accordingly, it can then be concluded that these 

two terms can be deleted without affecting the accuracy. 

In further analysis, it was assumed that the Ea equation has only 7 other terms and 

constants. Putting the sample data into calculation, the formula is determined as follows:   

Ea = 6.8Ec - 5.5Em - 8.9VaEc + 8.4VaEm - 0.58×10-4EcEm + 0.24×10-4Ec2       

+ 0.33×10-4Em2 + 732.58          (7) 

Although the R-square is almost equal to 1, the Ea regression equation is still 

complicated and has too many terms, which is inconvenient for practical use. In order to 

simplify the terms in the equation, the parameters were re-selected based on the theoretical 

equation. After several analyses, the equation was determined as follows: 

Ea = 6.3Ec - 5.1Em - 9.1VaEc + 8.7VaEm        (8) 

Table 2 shows that each term has more accuracy. Comparing with the previous analysis 

result, the standard errors are greatly decreased, the T-ratio in each term adds up in the 

equation, and R-square of the equation also reaches 0.9924. This result shows that the 

equation has high reliability and is a simple formula good for practical use. 
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EXPERIMENTAL PROCEDURE AND RESULTS 

Concrete and mortar specimens were made from normal weight sand, Portland cement 

and two different aggregates, normal weight and lightweight. The lightweight aggregates 

used were expanded shale produced in Taiwan with a particle density of 1200 kg/m3 - 1400 

kg/m3 and expanded clay produced in China with a particle density of 800 kg/m3 - 1000 

kg/m3. The aggregate sizes were near 20 mm. The water-cement ratio was kept at 0.4 

throughout the test program. In order to keep the effective water-cement ratio as constant as 

possible, the lightweight aggregate was immersed in water for 30 minutes before mixing and 

then surface dried with a towel. Portland cement, water, and normal weight sand were firstly 

mixed and then placed one aggregate in the center of mortar to form Central Aggregate 

Model. Specimens were cured in a curing room (23 °C, R.H. > 95 %) until the time for 

testing. In order to determine various E values for the mortar and concrete at different 

compressive strengths, this research measured different Ec and Em values at different 

specimen curing ages. The E values were measured according to the ASTM Test Method for 

Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression (C-469). A test 

machine with a 2000 KN load capacity was used. The E values for normal weight aggregate 

could be measured directly on the cylinder cores or calculated from the Ea equation. The 

results were compared to determine the validity of the proposed model and Ea equation. 

Having achieved a close agreement between the calculated and tested data, a series of 

lightweight aggregate concrete and mortar cylinders were subsequently tested to obtain the 

Ec, Em and Va values. The cylinder sizes were selected as 

 normal concrete and mortar:150φ × 150 mm (spherical normal aggregate size is near 

120 mm) 

 normal weight aggregate core: 44φ × 44 mm (cored from concrete specimens) 
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 lightweight aggregate concrete and mortar: 28 φ × 28 mm (lightweight aggregate size 

is near 20 mm)  

The total number of mortar and concrete specimens was 27, with 3 cores. The mortar 

was blended first and then mixed with a single aggregate to make the Central Aggregate 

Model specimen. In addition to the concrete specimen, a mortar specimen was also made 

using the same batch for comparison. 

The mortar and concrete compression test results were used to determine Ec and Em 

respectively. The Ea values are shown in Tables 3 and 4. From the Ea value comparison 

determined using the Ea equation and core cylinders from the normal weight aggregate 

(shown in Table 3), the errors were within 10 %. The result means that the Ea equation has 

high reliability. The Ea results for the lightweight aggregate based on the Ea equation are 

shown in Table 4. It was found that the Ea of expanded shale from the six sets were from 8.0 

GPa to 11.7 GPa. The average was 10.25 GPa and the variation stayed within 22 %. The Ea 

of expanded clay were from 5.5 GPa to 7.8 GPa. The average was 6.8 GPa and the variation 

stayed within 20 %. This indicates that there is consistency in determining Ea using the 

proposed equation. This means that using the Central Aggregate Model to simulate a single 

aggregate in concrete and deriving the Ea equation is reasonable and acceptable. 
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CONCLUSION 

This study proposed the Central Aggregate Model for simulating the aggregate inside 

concrete and establishing the E relationship among the aggregate, mortar and concrete. With 



 11

simple test verification, the following results were obtained: 

(1) By comparing the numerical analysis result with the theoretical solution, it was proven 

that using the ANSYS program to analyze the Central Aggregate Model is acceptable 

and the concrete model established using the numerical method is closer to the actual 

stress distribution in concrete. 

(2) In the Counto model, when the E ratio of the two materials increases, the Ec error will 

increase. This is because the theoretical model assumed constant stress and constant 

strain modes, which did not match the actual stress condition in the concrete.  

(3) This study indicates the practicability of using the numerical method to establish the 

relationship among Ea, Em, Ec and Va based on the Central Aggregate Model. 

Substituting the experimental results into the Ea equation to determine the E value for 

lightweight aggregate produced in Taiwan and China was proven to be an excellent and 

reliable method.   

(4) According to the numerical results, an Ea equation for the Central Aggregate Model was 

evaluated as 

Ea = 6.3 Ec - 5.1Em - 9.1VaEc + 8.7VaEm 
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ν = poisson’s ratio 



 14

List of Table Captions 

 

Table 1 Results of regression 

Table 2 Results of regression 

Table 3 Comparison of experimental and Ea equation results 

Table 4 Determination of Ea based on Ea equation 



 15

List of Figure Captions 

 

Figure 1 Central Aggregate Model 

Figure 2 Convergence of axial deformation and principal stress 

Figure 3 Theoretical concrete model 

Figure 4 Theoretical and numerical solution comparison 

Figure 5 Principal stress distribution in the Central Aggregate Model 

Figure 6 The Poisson’s ratio effect on Ec 

Figure 7 Relation among Ea , Em and Ec 

 



 16

 

Table 1 Results of regression  
Ea = f (Va, Ec, Em, VaEc, VaEm, EcEm, Va2, Ec2, Em2) 

Parameter Coefficient Standard error T-Ratio P-value 
Va 1.25×103 2.46×104 5.09×10-2 0.959 
Ec 6.68×100 2.74×10-1 2.44×101 0.000 
Em -5.40×100 2.57×10-1 -2.10×101 0.000 

VaEc -8.79×100 3.28×10-1 -2.68×101 0.000 
VaEm 8.34×100 3.01×10-1 2.77×101 0.000 
EcEm -5.90×10-5 7.08×10-6 -8.33×100 0.000 

Va2 -4.48×103 2.97×104 -1.51×10-1 0.880 
Ec2 2.49×10-5 5.21×10-6 4.78×100 0.000 
Em2 3.26×10-5 2.97×10-6 1.09×101 0.000 

constant 9.39×102 4.90×103 1.92×10-1 0.848 

R-square=0.9956 
 
 
 

Table 2 Results of regression 

Ea = f (Ec, Em, VaEc, VaEm) 

Parameter coefficient Standard error T-Ratio P-value 
Ec 6.332 0.1391 45.66 0.000 
Em -5.122 0.1351 -37.91 0.000 

VaEc -9.103 0.3123 -29.15 0.000 
VaEm 8.735 0.2990 29.28 0.000 

R-square=0.9924 
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Table 3 Comparison of experimental and Ea equation results 

Curing 
time 

Em 
(Gpa) 

Ec 
(Gpa) 

Va Experimental 
Ea (Gpa) 

Equation 
Ea (GPa) 

Error 
(%) Normal 

Weight 
Aggregate 
Concrete 30 hrs 15.1

















5.15
8.14
9.14

 
19.3 
18.2 
19.0 

0.34
0.30
0.30

32.3 
29.8 
30.5 

29.5 
27.4 
30.2 

-8.6 
-8.1 
-1.0 

 
 
 
 

Table 4 Determination of Ea based on Ea equation 

Light 
Weight 

Aggregate 

Curing 
time 

Em 
(GPa) 

Ec 
(GPa) 

Va Ea (GPa) (%)100
.

.
×

−
Ave

AveEa

24 hrs 12.9
















9.13
9.12
9.11

 
11.8 
11.3 
12.2 

0.28
0.28
0.24

9.8
















4.11
0.8
9.9

 
-3.4 
-22.0 
+11.2 Expanded 

Shale 
(Taiwan) 

42 hrs 18.2
















2.18
1.18
4.18

 
15.4 
16.0 
16.1 

0.28
0.25
0.26

10.7
















7.11
2.11
3.9

 
-9.3 
+9.3 
+14.1 

Expanded 
Clay 

(China) 
20 hrs 11.4

















1.12
4.11
6.10

 
9.6 
10.0 
10.2 

0.27
0.27
0.27

6.8
















8.7
1.7
5.5

 
-19.1 
+4.4 
+14.7 
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Figure 1 Central Aggregate Model 
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Figure 2 Convergence of axial deformation and principal stress 
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Figure 3 Theoretical concrete model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Theoretical and numerical solution comparison 
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Figure 5 Principal stress distribution in the Central Aggregate Model 
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Figure 6 The Poisson’s ratio effect on Ec 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 Relation among Ea, Em, and Ec 
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