## 國立中與大學

109 學年度 碩士班考試入學招生

## 試題

學系:土木工程學系甲組 科目名稱:工程數學

科目: 工程數學

系所: 土木工程學系 甲組

## 本科目可以使用計算機

本科目試題共 1 勇

Find a general solution for  $e^{3y}y' = 2(x + e^{3y}) + 3$ .

(10%)

- Solve the initial value problem  $y'' + 2y' + 4y = \delta(t-1)$  with y(0) = y'(0) = 0.  $\delta$  is the Dirac delta function. (10%)
- 3 Find all eigenvalues and corresponding eigenvectors for  $\mathbf{A} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 1 & 2 \end{bmatrix}$ . (10%)
- 4 If  $\mathbf{A} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$  is a n by n square matrix and  $\det \mathbf{A} = \alpha$ , find

(a)  $\det(\mathbf{A}\mathbf{A}^{\mathrm{T}})$ , (5%)

(b) det(cA) in which c is a scalar.

(5%)

5 Consider a partial differential equation

$$\frac{\partial^2 u(x,t)}{\partial t^2} + \alpha^2 \frac{\partial^4 u(x,t)}{\partial x^4} = 0$$

in which u(x, t) is a periodic function of t satisfying

$$u(0,t) = u(L,t) = \frac{\partial^2 u(x,t)}{\partial x^2} \bigg|_{x=0} = \frac{\partial^2 u(x,t)}{\partial x^2} \bigg|_{x=L} = \frac{\partial u(x,t)}{\partial t} \bigg|_{t=0} = 0$$

and

$$u(x,0) = v_1 \sin\left(\frac{\pi x}{L}\right) + v_2 \sin\left(\frac{2\pi x}{L}\right).$$

 $\alpha$ ,  $v_1$ ,  $v_2$  and L are some positive constants.

(a) Solve the PDE.

(25%)

(b) What is the period of u(x, t)?

(5%)

6 Solve the partial differential equation

$$\frac{\partial u(x,t)}{\partial t} + c \frac{\partial u(x,t)}{\partial x} = 0$$

with  $u(x, 0) = u_0(x)$ . c is a constant.

(10%)

- 7 Consider a scalar function f(x, y, z) = xz yz and a vector a = [1, 2, 3].
  - (a) Calculate the directional derivative of f at point P: (1, 0, 3) in the direction a.
  - (b) Find the direction in which f has maximum rate of change at P.

(5%)

(5%)

8 Evaluate

$$I = \iint_{S} xz^{2}dydz + x^{2}ydzdx - xy^{2}dxdy$$

in which S is a closed surface consisting of the cylinder  $x^2 + y^2 = 4$  ( $0 \le z \le 3$ ) and the circular disks z = 0 and z = 3 ( $x^2 + y^2 \le 4$ ). (10%)