系所:土木工程學系丙組

本科目可以使用計算機

本科目試題共1頁

1. Please find complex Fourier integral of f (x) (20)

$$f(x) = e^{-|x|}$$

- 2. Please find the principle stresses (Eigen value) and their orientation (Eigenvectors) given $\sigma_x = 10$, $\sigma_y = 50$, $\tau_{xy} = 10$ (20).
- 3. Equation of motion can be expressed as

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{z}^2} = \frac{1}{c^2} \frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2}$$

Where c is wave velocity. Please solve it for a harmonic motion vibration with frequency ω (i.e. assuming $u(z,t)=U(z)e^{i\omega t}$) given boundary condition: $\frac{\partial u}{\partial z}=0$ at z=0, u=0 at z=10 (20).

4. According to Terzaghi's bearing capacity theory, the ultimate bearing capacity (qu) can be expressed as:

$$q_u = cN_c + qN_q + 0.5BN_r$$

Where Nc =
$$\frac{Nq-1}{\tan \varphi}$$
 and Nq = $\frac{e^{2(\frac{3\pi}{4} - \frac{\varphi}{2})\tan \varphi}}{2\cos^{2}(\frac{\pi}{4} + \frac{\varphi}{2})}$
Please find N_c given φ =0. (20)

5. The differential equation of long pile is expressed as

$$EI\frac{d^4y}{dx^4} + ky = 0$$

Where EI is bending stiffness of pile and k is stiffness of soil. Please solve the equation given the following boundary equation. (20)

$$x=0, EI \frac{d^3y}{dx^3} = P$$

$$x=0, EI \frac{d^2y}{dx^2} = 0$$

$$x=\infty, y = 0$$