系所:土木工程學系甲組

本科目可以使用計算機

本科目試題共 1頁

1. Solve the following nonhomogeneous linear system of ordinary differential equations with the given initial values,

$$\begin{bmatrix} y_1'(t) \\ y_2'(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} + \begin{bmatrix} e^{2t} - 4t \\ t + 2 \end{bmatrix}, \quad y_1(0) = -1, \quad y_2(0) = -2$$

and show the solutions of $y_1(x)$ and $y_2(x)$.

(20%)

2. Solve the following initial value problem of a linear ordinary differential equation.

$$y''(t) + 4y(t) = \begin{cases} 4\cos t & , \ 0 \le t \le \pi \\ 0 & , \ t > \pi \end{cases}, \quad y(0) = \frac{8}{3}, \ y'(0) = 1$$
 (20%)

3. Calculate the Fourier series of the following periodic function, h(x).

$$h(x) = 3x^2$$
 , $-\pi < x < \pi$
and $h(x + 2\pi) = h(x)$ (20%)

4. $(\frac{x}{2} + 2x^3)$, $(2x^3 + \frac{1}{x})$, and $(\frac{4}{x} + 2x^3 + \frac{x}{8})$ are three solutions of the following linear ordinary differential equation among others

$$x^2y''+a(x)y'+b(x)y=g(x)$$

Find $a(x)$, $b(x)$, and $g(x)$. (20%)

5. Solve the following partial differential equation to find the solution of u(x,t)

$$\frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2} \ , \ \ 0 \le x \le l \ , \ t \ge 0$$

which has the boundary conditions: $u(0,t) = u_x(l,t) = 0$; and the initial condition: u(x,0) = f(x), $u_t(x,0) = 0$. (20%)