系所:土木工程學系乙組

本科目可以使用計算機

本科目試題共 1

1. Solve the initial value problem and plot the time history of y for the following ordinary differential equation: (10%)

$$y'' + 0.4y' + 9.04y = 0$$
 with $y(0) = 0$, $y'(0) = 3$.

2. Find (10%)

(a)
$$L\left[2\cosh(\omega t)+3\sinh(\omega t)\right]$$
, (b) $L^{-1}\left[\frac{2s}{s^2+25s+150}\right]$.

3. Compute the (a) divergence, (b) curl, and (c) gradient for $3y^3\vec{i} - 2xz^2\vec{j} + xyz\vec{k}$.

(20%)

- 4. Give the following matrix: $\mathbf{A} = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix}$ (20%)
 - (a) Find the eigenvalues and eigenvectors of A.
 - (b) Diagonalize A and then use the results to find A^{10} .
- 5. Interpret the physical meanings of Fourier series and Fourier transform, respectively. (10%)
- 6. Solve the following partial differential equation

(20%)

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} - G \quad (G: acceleration of gravity)$$

with boundary conditions: u(0, t) = 0

$$u(L, t) = 0$$

and initial conditions: $u(x, 0) = f(x) = \begin{cases} \frac{2x}{L}, & \text{if } 0 < x < \frac{L}{2} \\ \frac{2}{L}(L-x), & \text{if } \frac{L}{2} < x < L \end{cases}$

$$u_t(x,\,0)=0$$

$$\int_{-\infty}^{\infty} \frac{\sin mx}{x(x^2 + k^2)} dx \qquad (m \ge 0, \ k > 0)$$
 (10%)