系所:土木工程學系甲組

本科目可以使用計算機

本科目試題共 1 頁

1. $(\frac{-x^2}{3} + 2x^{-1})$, $(\frac{-x^2}{3})$, and $(\frac{-x^2}{3} - x^3)$ are three solutions of the following linear ordinary differential equation among others

$$x^{2}y'' + a(x)y' + b(x)y = g(x)$$

Find (1) a(x), b(x), and g(x);

(15%)

(2) the general solution of the ODE, v(x).

(5%)

- 2. (1) Considering a matrix $A = \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix}$, find its eigenvalues and eigenvectors. (8%)
 - (2) Use the results of (1) to solve the following system of ordinary differential equations

$$\begin{bmatrix} y_1'(t) \\ y_2'(t) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} + \begin{bmatrix} 10\cos t \\ -10\sin t \end{bmatrix}$$

Find the general solutions of $y_1(x)$ and $y_2(x)$.

(12%)

3. Calculate the general solution of the following initial value problem of a linear ordinary differential equation.

$$y''(t) + 3y'(t) + 2y(t) = \begin{cases} 1 & \text{if } 0 \le t \le 1 \\ 0 & \text{if } t > 1 \end{cases}, \quad y(0) = 0, \quad y'(0) = 0$$
 (20%)

4. Calculate the Fourier sine series of the following periodic function, f(x).

$$f(x) = \begin{cases} x & , 0 \le x \le 3 \\ x - 6 & , 3 < x < 6 \end{cases}$$
and $f(x + 6) = f(x)$ (20%)

5. Solve the following partial differential equation to find the solution of u(x,t)

$$\frac{\partial u}{\partial t} = K \frac{\partial^2 u}{\partial x^2} , \quad 0 \le x \le l , \ t \ge 0$$

which has the boundary conditions: u(0,t) = u(l,t) = 0; and the initial condition: u(x,0) = x.

(20%)