本科目可以使用計算機

本科目試題共/頁

1. Solve the following ODEs

(15%)

(1)
$$x^2y'' + 2xy' - 2y = 0$$
, $y(1) = -1$, $y'(1) = -7$.

$$(2)(D^2-1)D^3(D^2+D+2)y=0, D=\frac{d}{dt}.$$

2. Find the Laplace / inverse Laplace transforms (10%)

(1)
$$L\left\{\sinh^2 t - t^{1/2}\right\}$$
. (2) $L^{-1}\left\{\left(\frac{s-2}{s-3}\right)e^{-\pi s}\right\}$.

3. Consider the vector differential calculus, if

$$f = xz - yz$$
, and $\vec{A} = y^2 \vec{i} + (y^2 - x^2) \vec{j} + 2Z^2 \vec{k}$,
then to find: (20%)

(1) ∇^2 (xz f). (2) div (grad f).

(3) curl \bar{A} . (4) grad (div \bar{A}).

4. Find the line integral $I = \int_c 2xy dx + (x^2 - 3y^2) dy$, where curve C is shown in Fig.1. (10%)

5. Expand f(x) = x, -2 < x < 2, in a Fourier series. (6%)

6.(1) Solve the following partial differential equation (15%)

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} - G \qquad (G: acceleration of gravity)$$

with two boundary conditions: u(0, t) = 0 and u(L, t) = 0,

and two initial conditions: u(x, 0) = f(x) and $u_t(x, 0) = 0$.

(2) Also illustrate the physical meanings of eigen values and eigen functions of this equation. (10%)

7.Evaluate

(1)
$$\int_{-\infty}^{\infty} \frac{dx}{(x-1)(x^2+3)}.$$
 (8 %)

(2)
$$\oint_{\Gamma} \frac{e^{z^3}}{(z-i)^3} dz$$
, (6%)

where Γ is a closed path that does not pass through i.

