系所:土木工程學系甲組

本科目可以使用計算機

本科目試題共 1

頁

1. (x), (x+1), and $(x-e^{-x})$ are 3 solutions of the following linear ordinary differential equation

$$y'' + a(x)y' + b(x)y = f(x)$$

Find (1). a(x), b(x), and f(x), (2). the general solution, y(x). (20%)

2. A matrix $A = \begin{bmatrix} -1 & 2 & a \\ 2 & 4 & b \\ 2 & 1 & c \end{bmatrix}$ has two eigenvectors $\phi_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$; $\phi_2 = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}$,

where a, b, c are unknown constants. Find (1). the values of a, b, c,

(2). the 3 eigenvalues λ_1 , λ_2 , λ_3 , and (3). the third eigenvector ϕ_3 . (20%)

3. A system of ordinary differential equation with initial conditions

$$\begin{bmatrix} y_1'(t) \\ y_2'(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -2 \end{bmatrix} \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \delta(t) \end{bmatrix}; \begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

where $\delta(t)$ is the Dirac delta function. Find (1). $y_1(t)$, (2). the maximum value of $y_1(t)$. (20%)

4. Use half-range and Fourier expansion methods to expand the equation:

$$f(x) = x^2$$
, $0 < x < L$, (1). in a cosine series, (2). in a sine series, and (3). in a Fourier series. (15%)

5. Solve the following partial differential equation:

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}, \text{ with two boundary conditions: } u(0, t) = 0 \text{ and } u(L, t) = 0;$$

and two initial conditions: u(x, 0) = f(x) and $u_t(x, 0) = g(x)$. Also, interpret the physical meanings of eigenvalues and eigenfunctions of this equation. (1)

(15%)

6. Evaluate

$$\int_{-\infty}^{\infty} \frac{\sin mx}{x(x^2 + k^2)} dx \quad (m \ge 0, \ k > 0)$$
 (10%)