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Abstract. Conventional unsupervised classification divides all pixels within an image into corresponding classes based on
the distance between pixels and the cluster centres. The number of classes must be selected a priori but is seldom
ascertainable with little information. To analyze a large dataset, such as a remote sensing dataset, requires an automatic
unsupervised classifier which needs no human effort during the process of image clustering. A genetic algorithm (GA) is
adopted to search the cluster centres and choose a suitable cluster number for digital images to overcome the disadvantages
of the conventional unsupervised classifier. The GA-based automated classifier was executed on several test images for
validity and SPOT satellite imagery for practical application. The satellite images classified by the GA-based classifier and
iterative self-organizing data analysis technique (ISODATA) were compared with a classified result through a supervised
classification. According to the estimation of classification accuracy by error matrices and �K statistic, the GA-based
classifier performed better than the unsupervised ISODATA and as good as a supervised classifier, even without
manipulation by an analyst. A modified GA-based classifier using maximum likelihood (represented by the z score) as a
clustering criterion was also proposed and proven to be capable of performing automatically as well as a supervised
classifier.

Résumé. La classification non dirigée conventionnelle divise tous les pixels à l’intérieur de l’image en classes
correspondantes sur la base de la distance entre les pixels et les centres des regroupements. Le nombre de classes doit être
sélectionné a priori, mais ce nombre est difficile à évaluer lorsque l’on dispose de peu d’information. Pour analyser un gros
ensemble de données comme c’est le cas en télédétection, il est nécessaire d’avoir un classifieur automatique non dirigé qui
ne requiert aucune intervention humaine durant le processus d’analyse des regroupements de l’image. L’algorithme
génétique (AG) est adopté pour rechercher les centres des regroupements ainsi qu’un nombre satisfaisant de regroupements
pour que les images numériques puissent s’affranchir des inconvénients du classifieur non dirigé conventionnel. Le
classifieur automatisé basé sur l’AG a été utilisé sur plusieurs images tests pour la validation et sur des images de SPOT
pour une application plus pratique. Les images satellitaires classifiées au moyen du classifieur AG et d’ISODATA
(« iterative self organizing data analysis technique ») ont été comparées avec un résultat de classification par le biais d’une
classification dirigée. L’estimation de la précision de classification utilisant les matrices d’erreur et les statistiques K a
montré que le classifieur basé sur l’AG affiche une meilleure performance que l’ISODATA non dirigé et une aussi bonne
performance que le classifieur dirigé même sans manipulation par l’analyste. Un classifieur modifié basé sur l’AG utilisant
le maximum de vraisemblance (représenté par la note z) comme critère de regroupement a aussi été proposé et a montré sa
capacité d’agir également de façon automatique comme classifieur dirigé.
[Traduit par la Rédaction]

Yang 213Introduction

Image classification, including supervised and unsupervised
classification, is a major analytical procedure in digital image
processing (Lillesand and Kiefer, 2000). Supervised
classification procedures require the analyst to provide training
areas, which are groups of pixels with known identities, to
assemble groups of similar pixels into a proper class (Avery and
Berlin, 1992). In comparison, unsupervised classification
divides all pixels within an image into corresponding classes
pixel by pixel and proceeds with fewer interactions with the
analyst. Unsupervised clustering techniques are broadly used
for exploratory data analysis. Unsupervised classification on
remote sensing imagery can be defined as the identification of
natural groups within multidimensional data and is an essential
step in automatic pattern recognition. A typical unsupervised
classification requires a specific number of classes based on the
analyst’s knowledge of the scene. However, the analyst seldom
has sufficient information to decide on a suitable cluster

number. In many cases, the given cluster number results in an
improper classification, and new runs have to be performed
from scratch or several clusters with greater similarity have to
be merged based on the experience of the analyst.

Recently, clustering techniques have been applied to vast
digital datasets, such as (i) medical images for diagnosing
tumors as benign or malignant in mammographs (Guliato et al.,
2003a; 2003b), segmenting bone and soft tissue in radiographs
(Pakin et al., 2003), and discriminating myocardial heart
disease from echocardiographs (Tsai et al., 2004); and
(ii) remote sensing images for land use analysis (Miller et al.,
1995; Mohanty and Majumdar, 1996; Bandyopadhyay and
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Maulik, 2002; Maulik and Bandyopadhyay, 2003), agriculture
monitoring (Rydberg and Borgefors, 2001; Murthy et al.,
2003), and natural hazard investigation and management (Ostir
et al., 2003; van der Sande et al., 2003; Yang et al., 2004;
2007). For civil and environmental engineers, clustering
techniques for practical applications are expected to detect the
earth terrain on remote sensing images automatically. Spectral
properties of specific informational classes of remote sensing
imagery change temporally, so the relationships between
informational classes and spectral classes are not always
constant, and relationships defined for one image cannot be
extended to others. In addition, the analyst has very limited
knowledge about the menu of classes and their specific
identities in most cases. With an unknown cluster number a
priori, the computational process and clustering accuracy of
unsupervised classification remain to be improved.

The aim of this research is to develop a repeatable, accurate,
and time-effective method to classify remote sensing imagery
automatically. A genetic algorithm (GA) based classifier was
established for solving a multidimensional unsupervised
classification problem to result in a best partition without prior
knowledge of the clustering number. The GA classifier was
encoded and tested on two artificial datasets with known cluster
numbers and cluster centres and a real image with an unknown
cluster number and cluster centres. The GA classifier was then
applied to a satellite image to identify a landslide area in central
Taiwan.

Methodology
Classical clustering algorithm

Clustering techniques can be broadly divided into two
categories, namely hierarchical and nonhierarchical (Murthy
and Chowdhury, 1996; Tseng and Yang, 2001). K means (or C
means), which is one of the most popular nonhierarchical
algorithms, optimizes an objective function that is the
minimum of the sum of squared Euclidean distances between
patterns and cluster centres (Murthy and Chowdhury, 1996;
Bischof et al., 1999; Nascimento et al., 2003). A systematical
solution to an optimal clustering decision is to apply a given
clustering algorithm for a range of K values and then evaluate
the validity of the resulting partition in each case (Dave and
Krishnapuram, 1997). In other words, the clustering problem is
to group a set of data objects into K desired clusters by
optimizing an objective function of high intracluster similarity
and low intercluster similarity (Mitra, 2004). However, the
clustering must be executed for every value of K over a specific
range and requires a large and costly computation. Based on K
means, the iterative self-organizing data analysis technique
(ISODATA) algorithm has been developed and is the most
popular method of unsupervised classification easily found in
the public domain (Pierce et al., 1998). Thus, an ISODATA
built-in image processing software, ERDAS, was used to run
the cases for comparison in this research. The ISODATA
algorithm starts with the analyst specifying a number of

categories and a classification criterion. The classifier then
calculates and assigns each pixel individually with a set of
arbitrarily selected pixels as cluster centres over the entire
scene. Next, new centres for each class are found and the entire
scene is classified again. The preceding steps are repeated until
there is no significant change detected in locations of class
centres. The initial number of classes is commonly set larger
than the possible actual number of classes in the field.
Consequently, the iteration of merging classes is performed
based on the mean and covariance matrix, which requires a
large computation for large objects. Thus, innovative
computational approaches were developed to efficiently search
the cluster centres, such as GAs and neural networks (NNs)
(Alippi and Cucchiara, 1992; Miller et al., 1995; Oin and
Suganthan, 2004; Tsai et al., 2004). Most neural network
algorithms include a training procedure that is an obstruction to
turn into a completely automatic classifier. GAs are particularly
suitable for solving complicated optimization problems in
situations where uncertainty and imprecision exist (Alippi and
Cucchiara, 1992). GAs have been used in a wide variety of
optimization problems, specifically in classifying digital
datasets (Alippi and Cucchiara, 1992; Zhang and Wang, 1994;
Ross, 1995; Diederich and Fortuner, 1999; Tseng and Yang,
2001; Bandyopadhyay and Maulik, 2002; Maulik and
Bandyopadhyay, 2003; Garai and Chaudhuri, 2004; Yang and
Su, 2006). However, human participation in several steps
during classical clustering remains a hurdle to changing the
unsupervised classification to an automated technique. By
employing a proper clustering index as fitness, a GA with a
length-variable chromosome can determine the most suitable
number of clusters and the most proper cluster centres at a
lower computation cost.

Automated GA-based classifier

There are several steps to establish a GA classifier for
automated clustering, including encoding chromosome strings,
defining a fitness function, and executing genetic operations
(Ross, 1995).

Encoding chromosome
In GA applications, the parameters of the searched space are

encoded in the form of strings, so-called chromosomes,
representing a solution of problems and being encoded by a
binary number, an integer, or a real number. Without assigning
the number of classes a priori, a variable string length is
designed (Maulik and Bandyopadhyay, 2003; Yang and Yang,
2004). In this research, a chromosome is encoded by positive
real numbers in which “0” represents a nonexistent cluster. The
value of K (valid clusters) is randomly assumed in the range
[Kmin, Kmax], where Kmin is usually assigned a value of 2 unless
special cases are considered, and Kmax is the length of a
chromosome. In a chromosome, each individual gene
represents either a cluster centre or a nonexistent cluster. For
each chromosome i in the population (i = 1, 2, � N, where N is
the size of the population), Ki points are chosen randomly from
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Fitness definition
Before a GA is operated, an objective function needs to be

defined to measure the fitness of each chromosome. In this
research, the main objective is to find the best clustering for
remote sensing imagery. The population evolves over
generations in an attempt to maximize the fitness, which is
considered the clustering validity in this research and assigns
an adaptability degree to each chromosome in the population.
Several clustering validity indices were developed to determine
optimal clustering, such as the separation index (SI), the
Daviers–Bouldin (DB) index, the Xie–Beni (XB) index, Hubert
statistics, and the Dunn index (DI) in which the DB index has
both a statistical and a geometric rationale (Ross, 1995; Bezdak
and Pal, 1998; Groenen and Jajuga, 2001; Bandyopadhyay and
Maulik, 2002; Maulik and Bandyopadhyay, 2003). The
minimum description length (MDL) was also used to determine
the optimal number of clusters (Bischof et al., 1999; Oin and
Suganthan, 2004). The GA classifier adopts the DB index to
represent the fitness of a chromosome because of its suitability
for remote sensing imagery. The DB index can be calculated as
follows (Xie and Beni, 1991; Bezdak and Pal, 1998;
Swanepoel, 1999; Groenen and Jajuga, 2001; Martini and
Schobel, 2001; Yang and Wu, 2001):
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where uij is the membership of each xi belonging to the jth
cluster; xi is any pixel in the image (1 ≤ i ≤ N, where N is the
total number of pixels in the image); vj is the centre of the jth
cluster (1 ≤ i ≤ K, where K is the total number of clusters); Sj is
the standard deviation of the jth cluster; Cj is the dataset of the
jth cluster; �Cj� is the pixel number of the jth cluster; dkj is the
Euclidean distance between the kth and jth centres; vk is the
other centres of the clusters (1 ≤ k ≤ K; and k ≠ j); Sk is the
standard deviation of the kth cluster; and �*� denotes the norm
for Euclidean distance calculation.

The DB index is defined as the averaged optimal ratio of the
intracluster scatter over the intercluster separation. Thus, the
fitness function for chromosome j is defined as 1/DBj. The
maximization of the fitness function ensures a minimum DB
value, which means the optimal clustering with the smallest
intracluster scatter and the largest intercluster separation.
Similarly, the ratio of the difference between class centres over
the sum of their standard deviations is called the normalized
difference, which is a typical measurement of the
distinctiveness between classes generally adopted in remote
sensing classification.

Genetic operations
In general, a GA is composed of three operators, namely

reproduction, crossover, and mutation. Reproduction calculates
a survival probability of each chromosome which is a criterion
to reproduce better chromosomes for the next generations. The
operation follows Darwinism: natural selection and survival of
the fittest. Crossover is a swapping process to create new
chromosomes between the reproduced chromosomes. To avoid
sticking to a local optimal, mutation is assigned to explore the
possible optimal in all the space. The mutation probability is
usually set smaller than the crossover and controls the
percentage to introduce new genes for trial. If the mutation
probability is too low, some useful genes are not discovered; on
the contrary, if it is too high, there will be severely random
perturbation (Gen and Cheng, 1997). These operations are
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the dataset and then are randomly allocated in the chromosome. Take the following case as an example. Assuming an image including
three bands as a classified digital dataset, N pixels for each layer, Kmin = 2, Kmax = 8, and Ki = 5 for the chromosome i, let the five
cluster centres be as follows:

Randomly, the classification centres can be encoded into a chromosome as follows:



repeated until the terminal criterion is satisfied and the best
chromosome is found. In following GA classification,
population size is equal to 80 chromosomes, and the maximum
iteration is 200 generations. After the calculation of fitness for
each chromosome in the population, the reproduction operator
is implemented by stochastic universal sampling (SUS), which
is a single-phase sampling algorithm with minimum spread and
zero bias, instead of the single selection pointer employed in
roulette wheel methods (Chipperfield et al., 1994). Regarding
crossover operation, 80% antecedents are swapped using a

uniform probability. The mutation rate is 1, which is
comparatively low because the newly introduced chromosomes
generate considerable disturbance. All GA operations were
programmed in MATLAB®, version 6.5 (The MathWorks,
Inc., 2002), and were conducted using a personal computer
with a Pentium IV processor at 1.4G Hz.

Validation of the GA-based classifier

Two artificial datasets, Data_1 and Data_2 shown in Figures 1
and 2, were designed as three-dimensional (3D) point-basis
datasets for validation of the GA classifier. Data_1 is an
irregularly tiered dataset with three clusters, and Data_2 is
characterized as a dataset with five spherical clusters. Both
datasets have distinctive features, especially Data_2. Clustering
centres of Data_1 and Data_2 were known a priori as the
comparable data. Figure 3 shows that the superior fitness varies
with the assigned clustering numbers. Three clusters for Data_1
and five clusters for Data_2 found by the GA classifier are
identical to the original design. In Figure 3, the maximum fitness
of Data_1 is lower than that of Data_2, illustrating that Data_1
less distinguishable than Data_2 as shown in Figures 1 and 2.

Table 1 lists the sizes of the original datasets, the actual and
classified numbers of clusters, and the centres of the clusters
through the classification of ISODATA and the GA classifier.
The GA classifier can also accurately identify the cluster
centres. Apparently, the GA classifier is able to classify both
datasets quite accurately, which assures that the validation of
the GA classifier is affirmative.

Application of the GA-based classifier to
image classification

After being examined using the artificial data, the GA
classifier was applied to real imagery data, namely a picture of
a dolphin (Data_3, see Figure 4) and a satellite image (Data_4,
see Figure 5).
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Figure 1. Distribution of points and cluster centres for Data_1.

Figure 2. Distribution of points and cluster centres for Data_2.

Figure 3. Superior fitness versus cluster numbers for Data_1 and
Data_2.



Characteristics of real images

Real images are usually more complicated and ambiguous
than point-basis datasets and are also quite large. For remote
sensing imagery, in particular, the clusters are not usually as
distinguishable as the artificial data because pixels of
intermediate values tend to fill in the gaps between groups
(Avery and Berlin, 1992). In addition, the influencing factors of
image brightness, such as illumination, shadowing, and mix
pixels, may produce extra variations in cluster partitioning.
However, remote sensing imagery is composed of several
spectral channels that provide multidimensional information to
identify various clusters.

Four clusters can be visually identified in Data_3, which
originally was a colorful picture as shown in Figure 4. Figure 6
displays the pixel distribution of the dolphin picture in a 3D

red–green–blue (RGB) space (where R is band B1, G is band
B2, and B is band B3).

A multispectral SPOT4 imag (with a path of K299 and a row
of J303) has about 9 620 000 pixels for each band and
28 860 000 pixels in total. For a clear display, only 15 752
pixels (rectangular subset in Figure 5) as Data_4 are shown and
discussed herein. A SPOT4 XS image of the Tsao-Ling region
in Taiwan was taken on 11 February 2000 after the Chi-Chi
earthquake, the most serious disaster in Taiwan during the last
century. The original image is a false-color image composed of
three bands, namely green (wavelength 0.50–0.59 µm, band 1
or B1), red (wavelength 0.61–0.68 µm, band 2 or B2), and near
infrared (wavelength 0.79–0.89 µm, band 3 or B3). Figure 7
shows the spectrum distribution and cluster centres in a 3D
space for Data_4.

The landslide at Tsao-Ling was caused by numerous blocks
sliding along the bedding planes between sandstone and shale
at the southwestern side of the mountain during the Chi-Chi
earthquake. The collapsing rocks due to vertical joints in the
rock masses of the cliff and debris rolled and slid down the
slope and into the valley (Water Conservancy Agency, 1999;
Yang et al., 2004). Estimation and identification of the
landslide area were essential before rescue and hazard
mitigation were undertaken.

Results and analysis
Figure 8 shows that the superior fitness varies with the

assigned cluster numbers for Data_3 and Data_4. Four clusters
for Data_3 and three clusters for Data_4 were found by the GA
classifier. Table 2 shows classification results for Data_3
through ISODATA by assigning the cluster number of four and
the GA automated classifier. Very similar cluster centres were
found by both classifiers. Through the GA classification,
Figure 9 shows a classified dolphin image that was identified
as four clusters, including the dark black representing the
tracing line of the dolphin, the light black representing the
dolphin’s back, the white representing the dolphin’s belly, and
the grey representing the background.
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Figure 4. Original dolphin picture (Data_3).

Total
no. of
points

No. of
actual
clusters

No. of
classified
clusters

Cluster centres

Type of
dataset Designed ISODATA GA classifier

Data_1
Three

irregular
clusters

150 3 3 {(30.30, 39.32, 29.72)
(183.66, 34.42, 35.64)
(187.64, 33.62, 239.24)}

{(30.30, 39.32, 29.72)
(183.66, 34.42, 35.64)
(187.64, 33.62, 239.24)}

{(30.30, 39.32, 29.72)
(183.66, 34.42, 35.64)
(187.64, 33.62, 239.24)}

Data_2
Five

spherical
clusters

100 5 5 {(39.90, 43.00, 40.25)
(38.55, 212.10, 210.00)
(211.15, 211.25, 209.00)
(209.45, 41.20, 38.85)
(124.35, 125.65, 125.05)}

{(39.90, 43.00, 40.25)
(38.55, 212.10, 210.00)
(211.15, 211.25, 209.00)
(209.45, 41.20, 38.85)
(124.35, 125.65, 125.05)}

{(39.90, 43.00, 40.25)
(38.55, 212.10, 210.00)
(211.15, 211.25, 209.00)
(209.45, 41.20, 38.85)
(124.35, 125.65, 125.05)}

Table 1. Classification results for Data_1 and Data_2.



Under the assignment of three cluster numbers for Data_4,
ISODATA classification was run by merging the most extremely
detailed 256 classes with the three most concise classes. Table 3
is a list of the classification results for Data_4, including the
computed cluster numbers and the classified cluster centres.
Figures 10 and 11 show the classifications in which three
clusters were yielded for the satellite image by ISODATA and
the GA classifier. To judge which classifier gave more accurate
clustering, error matrixes are calculated in Table 4. Because of
the lack of ground truth, a result from the supervised
classification on the SPOT image was used as reference data by
training the classifier with the spectral patterns of three classes
(water, forest, and landslide) that were manually identified. In an
error matrix, these diagonal entries are the number of correctly
classified pixels that provide the overall accuracy. The ISODATA

classification of the Tsao-Ling imagery has an overall accuracy
of only 87.71%, whereas the GA classification has an overall
accuracy of 96.70%. Comparing Figure 10 with Figure 11, a
clear difference can be seen in the lower right corner where
many pixels classified as water by ISODATA were classified as
forest by the GA classifier. This inconsistency can be explained
by Table 4, in which the ISODATA classification has a lower
accuracy in the landslide category because of misassignment of
water to landslide, especially in the southeast area, and a
significant commission error of the water category caused by
misassignment of forest to water in the northeast. It was proven
that the GA classifier performed almost as well as a supervised
classifier, but without the need for analyst knowledge of the
ground or model parameter being set a priori.

The statistical coefficient, �K, is an extant indicator of the
extent to which the percentage of correct outcomes of an error

208 © 2007 CASI

Vol. 33, No. 3, June/juin 2007

Figure 6. Distribution of pixels and cluster centres for Data_3
(with R as B1, G as B2, and B as B3).

Figure 7. Distribution of pixels and cluster centres for Data_4.

Figure 5. SPOT4 satellite image of the Tsao-Ling area (rectangular area as Data_4).



matrix are due to “true” agreement versus “chance” agreement.
In reality, the value of �K is usually between 0 and 1 (Lillesand
and Kiefer, 2000), where a value of 0 means that a given
classification is no better than a random assignment of pixels,
and a value approaching 1 means an ideal case. �K can be
calculated from the following equation (Lillesand and Kiefer,
2000) and is equal to 0.802 and 0.945 for the ISODATA and
GA classifications for Data_4, respectively (see Table 4):
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where K is the number of classes in an error matrix, nkk is the
number of observations in row k and column k (the major
diagonal), nk+ is the total number of observations in row k
(shown as the row total in the matrix), n+k is the total number of
observations in column k (shown as the column total in the
matrix), and N is the total number of observations included in
the matrix.

Modification of the GA-based classifier

In the previous GA classifications, elitism was adopted by
copying the best chromosome obtained in the previous iteration
into the current population so that the DB index can only
decrease or remain the same with an increase in generations. For

insight into the convergence of genetic evolution, the GA
classification was rerun by preserving the best chromosome
outside the population so that the best result of each generation
can be reported during the whole searching process. It was found
that there was a severe disturbance during the genetic evolution
because of the inconsistency between the clustering criterion and
the DB index. Some previous studies reported similar results,
namely that the K-means algorithm may fail to converge to a
local minimum under certain conditions (Tseng and Yang,
2001). In the previous GA-based and ISODATA classifications,
Euclidean distances between pixels and different cluster centres
were calculated to determine which class is the nearest neighbor
for every pixel, the so-called minimum distance (MD)
classification. The GA–MD classifier has fewer provisions for
accommodating differences in variability of classes for some
classes that may overlap at their edges in remote sensing
imagery. Thus, the clustering criterion was modified from a hard
decision (minimum distance) to a soft decision by considering
stochastic probability. Maximum likelihood (ML) was used in
the clustering decision rule in which the nearest cluster centre is
considered in relative likelihoods. Based on the assumption that
all classes display multivariate normal (Gaussian) frequency
distributions, the likelihood-estimate-based clustering was
performed by computing the posterior probabilities of all classes.
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Figure 9. GA classification for Data_3.

No. of
actual clusters

No. of
classified clusters

Cluster centres

ISODATA GA classifier

Unknown 4 {(12.34, 11.78, 13.76)
(131.61, 155.76, 205.01)
(189.69, 12.62, 52.40)
(244.32, 161.18, 22.26)}

{(5.95, 5.58, 6.45)
(131.10, 153.39, 201.42)
(190.00, 12.10, 52.08)
(245.16, 161.36, 21.35)}

Table 2. Classification results for Data_3.

Figure 8. Superior fitness versus cluster numbers for Data_3 and
Data_4.



Besides the cluster centres, the variance of clusters is essential in
ML classification. The ML–GA classifier categorizes the image
by minimum distance first to generate the standard deviations for
all clusters in each generation as the training data, and then
classifies pixel by pixel based on the probabilities (represented
by a z score, a ratio of the Euclidean distance to the standard
deviation) with all cluster centres. The crisp decision philosophy
of winner takes all was used to choose the nearest centre of a
cluster where the pixel has a maximum probability (a minimum z
score) of belonging to a cluster. Thus, after the dataset is
clustered by Equations (1) and (2), clustering must be run by
replacing the membership function Equation (1) by Equation (7)
to obtain the DB index:
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The ML–GA classifier was tested on Data_1 and Data_2 and
obtained the cluster number and cluster centres with 100%
accuracy. A better fitness value was found for the remote
sensing image by the ML–GA classifier in Figure 12. The best
DB index was almost attained by the ML–GA classifier at
around the 15th generation and completely attained at the 25th
generation, which was earlier than that by the MD–GA
classifier. Also, the disturbance during the genetic evolution
had been significantly decreased by the ML–GA classifier (see
Figure 13). An error matrix in Table 5 was estimated by
executing a supervised classification using ML as a clustering
criterion for comparison. The ML–GA classification with an
overall accuracy of up to 99.51% and �K of 99.20% was proven
to perform as well as a supervised classifier. Based on the
quantitative analyses, the ML–GA has the following
advantages: rapid approach to optimal clustering, suitability for
remote sensing images with class overlap, satisfactory
accuracy, and total automation.
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Reference data

Classification Water Landslide Forest Row total

Water 2002 (2150) 0 (12) 0 (441) 2 002 (2 603)
Landslide 0 (8) 7198 (6066) 269 (260) 7 467 (6 334)
Forest 250 (94) 1 (1121) 6032 (5600) 6 283 (6 815)
Column total 2252 7199 6301 15 752

Producer’s
accuracy (%)

User’s
accuracy (%)

Water 88.90 (95.47) 100.00 (82.60)
Landslide 99.99 (84.26) 96.40 (95.77)
Forest 95.73 (88.87) 96.01 (82.17)
Overall accuracy (%) 96.70 (87.71)

Note: Values in parentheses are for the ISODATA classification.

Table 4. Error matrix of GA classification versus ISODATA for Data_4.

No. of
actual
clusters

No. of
classified
clusters

Cluster centres

ISODATA MD–GA classifier ML–GA classifier

Unknown 3 {(14.64, 21.15, 25.64)
(61.52, 62.96, 140.27)
(171.15, 166.81, 190.35)}

{(8.55, 16.08, 7.82) (45.67,
47.87, 130.92) (165.71,
161.73, 186.17)}

{(9.19, 16.55, 10.36) ±21.69a

(47.42, 49.44, 133.30) ±44.68a

(167.18, 163.19, 186.67) ±58.76a}
aStandard deviation.

Table 3. Classification results for Data_4.

Figure 10. ISODATA classification for Data_4. Figure 11. GA classification for Data_4.



Conclusions
In classical unsupervised clustering methods, determination

of the cluster number and improvement of clustering accuracy
need more effort, especially where there is little knowledge of
ground truth. This paper proposes an automated unsupervised
classifier using a genetic algorithm (GA) that was tested on two
artificial datasets and applied to two real images. The
effectiveness of the GA classifier was assessed by the artificial
data, and the results verified that the GA classifier is able to
classify these datasets into exact clusters and accurately locate
cluster centres for artificial data without any information a
priori. For application to real digital imagery, the GA classifier
performed more satisfactorily than the ISODATA on both the
dolphin picture and the satellite image of the Tsao-Ling
landslide area. Without ground truth, the performance of
ISODATA and GA classifications was assessed by comparing
the result with a supervised classification on the SPOT4
satellite image. The overall accuracies have validated that the
GA classifier (96.70%) was superior to ISODATA (87.71%).
Also, the GA classification with a higher �K (0.945) than that

(0.802) of ISODATA means the GA classifier is more ideal
than ISODATA in the classification of the Tsao-Ling satellite
image. Furthermore, a modified GA classifier with a z score as
a clustering criterion performed more accurately and more
robustly in the application of satellite data. This modification
not only decreases the disturbance of the GA searching
process because of the inconsistency between the clustering
criterion and clustering validity, but also approaches a better
clustering result with a higher overall accuracy (99.51%). It
has been proven that the GA-based automated classifier is
able to classify remote sensing imagery, which seldom
records spectrally pure classes and often has an overlap of
classes, with a high accuracy and without human effort.
Future work includes enhancing the GA-based classifier with
more versatile and feasible applications for automatic
classification on remote sensing imagery.

Acknowledgments
This work was supported in part by the National Science

Council of Taiwan, Republic of China, under grant NSC-92-

© 2007 CASI 211

Canadian Journal of Remote Sensing / Journal canadien de télédétection
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