Landslide-induced levee failure by high concentrated sediment flow — A case of Shan-An levee at Chenyulan River, Taiwan

Ming-Der Yang a, Ji-Yuan Lin b,⁎, Chia-Yao Yao c, Jen-Yan Chen a, Tung-Ching Su d, Chyan-Deng Jan e

a Department of Civil Engineering, National Chung Hsing University, Taichung, Taiwan 402, R.O.C.
b The 4th River Basin Management Bureau, Water Resources Agency, Ministry of Economic Affairs, Changhua, Taiwan 524, R.O.C.
c Department of Construction Engineering, Chaoyang University of Technology, Taichung, Taiwan 413, R.O.C.
d Department of Civil Engineering and Engineering Management, National Quemoy University, Kinmen, Taiwan 892, R.O.C.
e Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan, Taiwan 701, R.O.C.

Article history:
Accepted 27 July 2011
Available online 4 August 2011

Keywords:
Outcrop investigation
Remote sensing
Scenario simulation
Floodling
Levee failure

1. Introduction

Being located in a sub-tropic area, Taiwan faces serious attacks from several typhoons during a Summer–Autumn season, and has a mean precipitation of 2500 mm/year and even up to 3000 mm/year in the central mountainous area. Last decades, almost every year Taiwan experienced seasonal disasters induced by typhoons which caused a serious threat to human life and property. Periodic flooding becomes a critical natural hazard so that the authorities have been devoted to disaster prevention and mitigation. Most of the serious floods occurred in central Taiwan, especially within Jhuoshuei River basin which is the second largest watershed in Taiwan. In an effort to address the flooding problem, the authority The Fourth River Basin Management Bureau commissioned to study the situation to come up with effective and practicable strategies for future structural design and improvement of drains within this area to control periodic flooding.

However, the mechanism of flood becomes complex nowadays. Besides a great amount of rainfall, landslides, which could be caused by river scour or heavy rainfall, are considered as another major factor inducing or exaggerating flood events. For example, Forecasting of Landslides Induced by Rainfalls (FLaIR) hydrological model was applied to correlate the rainfall amount and landslide or mudflow movement occurrences in Sarno, Southern Italy (Sirangelo and Braca, 2004). The triggering mechanism of the reservoir-induced landslide in Maoping on the left bank of the Qingjiang River, China, which resulted in relocation of a village of 290 people, was examined based on field investigation of the constituent structure and geological formation (Qi et al., 2006). Landslides in Clyde Dam reservoir, New Zealand, which were observed by a combination of inclinometers, extensometers and survey and correlated with controlling events

⁎ Corresponding author. Tel.: +886 4 23323000x4007; fax: +886 4 23742325.
E-mail address: jylin@mail.cyut.edu.tw (J.-Y. Lin).
including lake filling, storms, floods, prolonged wet periods and earthquakes, were found to increase their movement rates following prolonged rainfall events (Macfarlane, 2009). In the above cases, both perceived and modeling approaches were employed for the cause identification of landslide-induced flood event. This paper also applies a hydraulic model, remote sensing data, and field investigation to reveal the cause of landslide-induced levee failure and inundation.

Remote sensing techniques coupled with simulation models have been confirmed in identification, prevention and monitoring, and assessment of individual natural disaster. Satellite and airborne images are important data sources for scenario simulations of natural disasters, which are valuable to damage prevention by avoiding human settlements in unsuitable area (García-Meléndez et al., 1998; van der Sande et al., 2003). Various studies have shown that remote sensing data are spatially and temporally efficient in inundation investigation (Knebl et al., 2005; Pappenberger et al., 2005; Yang et al., 2007). Integration of remote sensing and scenario simulation can be a low-cost and efficient method providing critical information for decision support of disaster prevention and reduction to emergency managers and the disaster response community for disaster management (Montoya, 2003; Bisson et al., 2005; Teng et al., 2005; Tralli et al., 2005). This paper employs remote sensing data acquired from SPOT-IV and FORMOSAT-II satellites and airborne to identify the terrain change caused by flooding and the inundation area.

To avoid the repetition of the disasters in the future, this research focuses on a flood investigation by integrating remote sensing for mapping flood zones and scenario simulation for resolving the major causes of the levee collapse in the Shan-An flood during the flood event of 2nd July, 2004. A thorough review of disaster area identification, disaster cause analysis, and a constructive suggestion for the future recovery projects were addressed in this paper.

2. Study site: Chenyulan River

Jhuoshuei (meaning turbid water in Chinese) River is the longest (186.6 km) river in Taiwan and has a drainage area of 3157 km². Chenyulan River is the major branch of Jhuoshuei River, originates from Yushan Mountain, which is Taiwan’s highest mountain (3910 m above sea level), and has a main stream about 42.40 km, a drainage area of 450 km², and 6 main tributaries, including Jung-Kun River, Neimoupu River, Shihbachong River, Niouchou River, Heshe River, and Shalisian River (see Figure 1). With an average slope gradient of 1/20 throughout the whole drainage area, a supercritical flow often appears. In the supercritical state, waves are swept downstream and a small obstruction can create a wedge-shaped wave, and the flow has a high velocity and is usually described as rapid, shooting, and torrential (Chow, 1973).

Besides, the Chi-Chi earthquake (M 7.3) on 21 September 1999 was the largest natural disaster in Taiwan for last centenary and shook the formations of mountains and rivers in central Taiwan. Thousands of landslides were mapped through SPOT images in Jhuoshuei River basin draining much of the epicentral area (Dadson et al., 2004).
Heavy rainfalls added new impetus to the situation so that an averaged erosion rate of 3–7 mm/year and mostly up to 60 mm/year was caused by the combination of tectonic and climatic effects (Dadson et al., 2003). Following the Chi-Chi earthquake, a 4.4-fold increase of sediment concentration in Chenyulan River was observed by calculating unit sediment concentration from a log-transformed least-squares regression function (Dadson et al., 2004). According to the pre- and post-seismic suspended-sediment rating curves combining suspended-sediment concentration and water discharge, the suspended-sediment discharge of Jhuoshuei River increased comparably by a factor of 2.65 to 143 Mt/year based on the averaging 54 Mt/year before earthquake (Dadson et al., 2004). Many coseismic landslides remained confined to hillslopes, and more silts are expected to be carried by surface water downstream from the erosion areas (Yu et al., 2006). Silting up of riverbed and banks has caused a remarkable rise in the flood level to decrease the flood discharge capacity of Chenyulan River.

Increasing population and agricultural activities along the river required more waterway constructions for flood protection. However, the man-made flood control structures, such as river embankments and retaining basins, affect flooding characteristics. Chenyulan River has been significantly leveed so that much more sediment was deposited onto the riverbed. The worsening flood risk in the Chenyulan basin is not only a natural process but also the result of inappropriate human intervention in its drainage basin. Vegetation destruction and soil erosion in the watershed, shrinking water retaining areas, restriction of channel capacity could be reasons of levee destruction. The high frequency and long duration of flooding are accentuated by the deteriorating topography and human intervention. In consequence, flood disasters have brought untold hardships to residents, industrial developers, tourists and owners of tourism businesses in this area.

3. Field and outcrop investigations of Mindulle flood

A major rainy season extends from May to September with 91% of a mean annual rainfall (2182 mm/2400 mm) based on the record of Woxiang rain gauge station. Chenyulan River was battered by typhoons and tropical storms last decay as shown in Fig. 2. Of those events, Typhoon Mindulle induced the most serious catastrophe by unexpectedly huge amounts of rainfall to central Taiwan. The rescuers battled mudslides and muddy flood waters to successfully evacuate 295 trapped villagers in 51 mountainous regions in central Taiwan. More than 10,000 people were evacuated from susceptible districts to the shelters nearby. Many residents in the mountainous regions stayed at concentrated shelters for several weeks. Typhoon Mindulle stalled for only 8 h on the island, but the following rainfall incurred over 0.3 billion US dollars in property damages and 33 deaths. Following Typhoon Mindulle hitting Taiwan on 2nd July 2004, Taiwan Central Weather Bureau continually issued heavy rainfall warning due to outer rain from Mindulle, reaching central Taiwan on 3rd July, which was the day of Chi-Chi earthquake. The precipitation in the Mindulle event whose locations are shown in Fig. 1. Several levees protecting farming and living areas on the sides of Chenyulan River failed, in which the failure of Shan-An levee caused the most serious catastrophe. The interview with local residents revealed that the failure of earthen levee occurred at about 10 AM on the 3rd of July and started between Sections 17.1 and 18, and consequently floodwalls passed the Shan-An terrace on the east side of Chenyulan River with about 2 m of standing water and more than 100 ha of inundated area.

The valley along Chenyulan River is a typical fault-line valley. Chenyulan Fault, closely along Chenyulan River (see Figure 3), is a boundary fault separating the Neogene sedimentary rocks of the Western Foothills on the western side from the Paleogene metamorphic rocks of the Hsuehshan Range on the eastern side. Rock masses of the Chenyulan watershed are highly fractured due to faulting and folding. The soil of landslide area is unconsolidated and in modern alluvial deposition, containing large boulders, cobbles, gravels, sand, silt and clay. Investigation crews were deployed to interview residents. The survey crews equipped with kinematic GPS with digital maps to accurately locate the incidents were assembled to survey the disaster extent. Moreover, interviewing residents, finding on-site evidence of incidents, taking digital photographs and video tapes, roughly verifying the type of destruction, and determining the instant need at the incident sites were required. Several destructive incidents occurred along the Chenyulan River in the Mindulle event whose locations are shown in Fig. 1. Several levees protecting farming and living areas on the sides of Chenyulan River failed, in which the failure of Shan-An levee caused the most serious catastrophe. The interview with local residents revealed that the failure of earthen levees occurred at about 10 AM on the 3rd of July and started between Sections 17.1 and 18, and consequently floodwalls passed the Shan-An terrace on the east side of Chenyulan River with about 2 m of standing water and more than 100 ha of inundated area.

A comprehensive disaster investigation is an essential reference for disaster recovery planning, which includes rebuilding disaster areas, reconstituting government operations, and helping individuals and communities to return to normal (FEMA, 2006). Within the days following Typhoon Mindulle, several groups of field observers and

Table 1

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Rainfall (mm)/M.*</th>
<th>Failure length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typhoon Ofelia</td>
<td>June 21–24, 1990</td>
<td>131</td>
<td>75</td>
</tr>
<tr>
<td>Typhoon Yancy</td>
<td>August 17–20, 1990</td>
<td>425</td>
<td>264</td>
</tr>
<tr>
<td>Typhoon Doug</td>
<td>August 6–9, 1994</td>
<td>492</td>
<td>100</td>
</tr>
<tr>
<td>Typhoon Herb</td>
<td>July 29–August 1, 1996</td>
<td>808</td>
<td>480</td>
</tr>
<tr>
<td>Typhoon Zeb</td>
<td>October 13–17, 1998</td>
<td>297</td>
<td>120</td>
</tr>
<tr>
<td>Chi-Chi earthquake</td>
<td>September 21, 1999</td>
<td>7.3</td>
<td>802</td>
</tr>
<tr>
<td>Typhoon Mindulle</td>
<td>June 28–July 3, 2004</td>
<td>781</td>
<td>1620</td>
</tr>
</tbody>
</table>

* *M.*: Richter magnitude.
Outcrop investigation was implemented by sampling the sediment of one cubic meter (1 m × 1 m × 1 m) on the surface of the riverbed at 15 ordinary sampling sites along Chenyulan River as shown in Fig. 1. Sieve analysis was processed in situ and in laboratory for the particle size larger and less than 3/8 inch (9.5 mm), respectively. Table 2 shows the characteristics of the riverbed material samples that most of the sediments are gravels (34.1% to 74.2% by weight), and followed by cobbles (8.9% to 34.8%), boulders (0.8% to 23.0%), and sand (9.3% to 25.6%). All 15 sampling sites contain little silt and clay (particle < 0.06 mm) under 3.1%. In Table 2, the sorting coefficient So is a sorting index of describing the distribution of grain sizes in a sample of unconsolidated material and is defined as
\[\sqrt{D_{75}/D_{25}}, \] in which \(D_{75} \) and \(D_{25} \) are the diameters such that 75% and 25% material by weight is finer than these sizes respectively. For a river section with a steady flow, \(S_0 \) is small and classified as well-sorted to represent uniform particle of the riverbed in size. Among the 15 samples, 9 sites (60%) were classified into poor-sorted (\(S_0 \) larger than 4.0), 6 sites (40%) were classified into fair-sorted (\(S_0 \) between 2.5 and 4.0), and none was well-sorted (\(S_0 \) less than 2.5). The velocity of a high concentrated flow suddenly decreases at the abrupt widening sections, such as outcrop site Nos. 8, 9, 10, and 14, so that a great amount of debris sink and settle by comparatively large \(S_0 \) or poor-sorted. The particle size distribution of Chenyulan River shown in Fig. 4 reveals the sorting coefficient decreasing with the upper (the steepest curve), middle, and lower reaches. The upper and lower boundaries represent the maximum and minimum of grain size distribution. Significantly unsteady flow of Chenyulan River results in a poor-sorted riverbed that becomes the sources of high concentrated sediment flow during a flood event.

4. Image process of remote sensing data

To make a correct strategy of disaster response and recovery, acquisition of precise updated information is essential. Satellite images and aerial photographs were acquired to identify the flooding zone and damage assessment. Low-altitude aerial photographs were taken right after Mindulle and show an overall view of flooding severity in Fig. 5. Through photogrammetric process, an orthophoto mosaic was generated for an efficient disaster monitoring information, such as landslide relief, over a temporal and spatial scale (Hamandawana et al., 2005; Dewitte et al., 2008). In Fig. 6A and B, high-altitude aerial mosaics of Chenyulan River taken before and after Typhoon Mindulle give a sense of terrain change caused by the flood. The pre- and post-aerial photographs were taken in July 2003 and 2004 with a nominal scale of 1/800, an elevation above mean sea level of 3600 m, and endlap of 65% and sidelap of 30%. Planimetric surveys at scale of 1/1000 were performed in order to document the spatial extent of stratigraphic units shown in Fig. 6B. Section 18 has a width of ~300 m with a left bank of natural sharp hill and a right bank of concrete surfaced earthen levee.

To establish a DEM (Digital Elevation Model) with an accuracy of 0.5 m in elevation, the photogrammetric procedure was applied to the photograph negatives which were scanned through Vexcel Ultrascan 5000 scanner with a pixel resolution of 20 μm. For comparison, DEMs reveal the elevation variation around Shan-An region for the pre- and post-flood Chenyulan River by using ArcView’s Spatial Analyst extension. Based on the DEMs of the waterway, Fig. 7A shows the elevation change of riverbed. About 138,500 m² sediments were washed out and ~13 m sediments deposited to riverbank from the landslide situated on the slope hill of the opposite side of Shan-An levee. In addition, satellite image also assisted in mapping of the hazard areas and estimating the damages of the Shan-An residential suburb, including agricultural damages, broken traffic, and building or infrastructure destructions. The interpretation of the satellite images pre- and post-flood in Fig. 6C and D, respectively, were employed to identify the hazard areas and damages by image processing on ERDAS IMAGINE, including geometric and radiometric correction, NDVI (Normalized Difference Vegetation Index) analysis, and change detection. Due to the daily imaging, FORMOSAT-II imagery, which was launched in May 2004 by National Space Organization (NSPO) of Taiwan and provides timely and low-cost image data with a panchromatic image with the resolution of 2 m-resolution and multi-spectral images of 8 m-resolution, is the most valuable remote sensing data source for disaster monitoring because of its high temporal resolution (NSPO, 2005). A repeated observation through satellite imagery is suitable for the long-term follow-up program. For multi-temporal image analysis, three requirements include univariate at each temporal image, precise co-registration, and radiometric consistency (Piwowar et al., 1998), which were completed prior to analysis in this research. Near infrared (NIR) reflectance intensity is related most to vegetation biomass, which absorbs red light, and inversely to water content. Destroyed vegetation and water content caused by the flood reduced NIR reflectance intensity in the inundated terrains. NDVI in terms of the difference between NIR and red reflectance intensity ranges 1 and −1 to represent vegetation condition. Change detection was processed on NDVI maps derived from a SPOT-IV satellite image before the flood and FORMOSAT-II after the flood for inundation identification. The inundation map derived from satellite images and overlaid onto an aerial photograph represents an estimate of the capped farm of the inundated area of 157 ha and the sediment deposit area of ~40 ha shown in red in Fig. 7B. Most inundation area was vineyard that caused about a loss of 7.6 million US dollars based on the unit grape yield of 31 ton/ha.

5. Hydraulic simulation using HEC-RAS

It was under argument whether Shan-An levee was designed to resist the heavy rainfall brought by Typhoon. A hydraulic model HEC-RAS (Hydrologic Engineering Center’s River Analysis System) version 3.1.2 developed by U.S. Army Corps of Engineers includes water surface profile...
computations and bridge hydraulic was adopted to simulate one-dimensional unsteady flow for the Chenyulan River. HEC-RAS is able to simulate steady and unsteady flows, consider various hydraulic works, including bridges and storage areas, and facilitate hydraulic design (USACE, 2002). HEC-RAS river hydraulic model was proved to provide accurate and useful results in flooding related research by detecting the flooded areas for a discharge and flood hydrograph with a given return period (Pappenberger et al., 2005). The HEC-RAS simulation provides a water surface profile and cross-section mean velocity of the lower reach of Chenyulan River around Shan-An levee. The HEC-RAS input includes geometric data, such as river reach, junction, cross section, bridge, and inline weir, Manning’s n value, flow data, and boundary conditions. The cross-section information was measured based on the planimetric shape derived from aerial photographs. According to the field investigation and the comparison between the riverbed situation (see Figure 5G) with the photographs of the typical channels in Chow’s book (1973), Manning’s n was estimated as 0.042 for the hydraulic simulation.

Within the Chenyulan watershed, there are four rain gauge stations, including Alishan, Donpu, Woxiang, and Longshen Bridge (see Figure 1). According to the rainfall record and dimensionless unit hydrograph, the flow of Chenyulan River around Shan-An region was estimated during the flood event (July 2–5, 2004) as shown in Figure 8. Two peak flows occurred at about 9 AM on the 3rd with 3200 cms and at 11 PM on the 4th with 4585 cms. According to the witness interview, the failure of Shan-An levee started at about 10 PM on July 3rd and between Section 17.1 and Section 18. At this time point, the estimated peak flow is about 3200 cms (about 10-year return period of 3130 cms) which is much less the design flow 5850 cms (100-year return period). The HEC-RAS result shows that the Shan-An levee should not be overtopped by a flow of such magnitude as brought by Mindulle. It remains to be found other causes responsible for the failure of Shan-An levee.

Two observations were suspected of the levee destruction inducing the devastating flood. One is the elevated river bed due to the amount of sediment delivered from the watershed and deposited on the reach of Chenyulan River. More importantly, the diversion of river by the sediments from the landslide was caused by the slope base erosion and heavy infiltration. The following work emphasizes in analyzing the landslide failure and the flow impact force on Shan-An levee.

6. Landslide analysis and impact force estimation

6.1. Landslide analysis

The landslide at the left hillside opposite to Shan-An levee was suspected of the major cause inducing the levee failure during Typhoon Mindulle. The pre- and post-aerial photographs of the landslide in Figure 9A and B were subset from Figure 6A and B, respectively. A small landslide with a run-out distance of ~240 m along with the maximum height of its rupture surface of 31 m were measured. Maps of ground displacements inferred from the comparison between the pre- and post-DEMs in Figure 9B. The volume change of the landslide can be estimated from the comparison of the DEMs. Based on the differential DEMs, a loss of volume of 138,500 m3 and the maximum height of its rupture surface of 31 m were measured. Maps of ground displacements inferred from the comparison between the profiles of A–B cross-section extracted from the DEMs in Figure 9C. Based on the equivalent mass of loss at the upper slope and deposit downslope, a loss of volume of 138,500 m3 and the maximum height of its rupture surface of 31 m were measured. Maps of ground displacements inferred from the comparison between the profiles of A–B cross-section extracted from the DEMs in Figure 9C. Based on the equivalent mass of loss at the upper slope and deposit downslope, a run-out distance, which is defined as the horizontal distance from the toe of the sliding slope to the farthest deposit (Finley et al., 1999), of ~240 m blocking 80% river width at Section 18 was estimated during the Mindulle event, but only ~50 m deposit extent was left on the left riverbank after the flood. In result, the flow diverted toward the Shan-An levee at 20° was inferred to increase the impact force of the flow.

6.2. The impact force of water (F_w)

Several reports addressed that the inundation with much sediment yield resulted in severe flood disasters (Kawake et al.,...
The impact force of debris was considered to be an affecting factor to exaggerate the flooding attack. For the quantitative analysis, impacts of water and debris were calculated to modify the simulation results for the levee failure. Impact force onto the levee is composed of flow impact force of water and debris and can be estimated as follows (Kogan, 1997).

\[F_w = \rho_{hc} V_{hc}^2 \]
\[\rho_{hc} = \rho_d C_v + (1 - C_v) \rho_w \]

in which \(F_w \) is the impact force of water per unit area (N/m²), \(V_{hc} \) is the velocity of hyper-concentrated sediment fluid (m/s), \(\rho_{hc} \) is the density of hyper-concentrated sediment fluid (kg/m³), \(\rho_d \) is the debris density (kg/m³), \(\rho_w \) is the water density (kg/m³), and \(C_v \) is the volumetric concentration (volume of debris/volume of water and debris, dimensionless).

Based on Manning’s formula, the flow depth (\(h \)) and velocity (\(V_{hc} \)) can be calculated for a hyper-concentrated sediment fluid as:

\[h = \left[\frac{nQ_{hc}}{B \sqrt{S}} \right]^{1/3} \]
\[V_{hc} = \frac{Q_{hc}}{(Bh)} \]

in which \(Q_{hc} \) is the hyper-concentrated sediment flow (m³/s), \(B \) is the river width (m), \(S \) is the river slope (%), and \(n \) is Manning coefficient. The hyper-concentrated sediment flow can be obtained by water flow (\(Q_w \)) and debris volumetric concentration (\(C_v \)) as:

\[Q_{hc} = \frac{1}{1-C_v} Q_w. \]

Based on on-site testing and observation, the following data were collected as \(\rho_d = 2650 \) kg/m³, \(\rho_w = 1000 \) kg/m³, \(C_v = 0.15 \), \(B = 300 \) m.
and $S = 1.93\%$. For a hyper-concentrated sediment flow, n has an empirical range between 0.1 and 0.06, and 0.1 is suggested for the front flow and adopted in this paper (PWRIMC, 1988). Subsequently, at the moment of levee collapse with $Q_w = 3200$ cms, the following can be calculated as $\rho_{hc} = 1247.5$ kg/m3, $Q_{hc} = 3764.7$ cms, $h = 3.7$ m, $V_{hc} = 3.3$ m/s, and $F_w = 14.0$ kN/m2.

6.3. The impact force of debris (F_d)

For large boulders in the flow, the impact force of the slurry can be estimated as:

$$F_d = C\rho_d AV_s$$

Fig. 6. Aerial photographs and false-color satellite images of Shan-An flood. Many seismic-triggered landslides remaining on the hillslope at the left riverside and Shan-An levee (the white line) at the right side of Chenyulan River in (A) pre-flood aerial photograph. Washed-out Shan-An levee marked in purple dots and the allocation of section surveying and cross-section No. as input into HEC-RAS simulation in (B) post-flood aerial photograph. Comparing (B) with (A), the river width was double and the levee residual was left in the water. False-color satellite images of (C) pre-flood acquired by SPOT-IV and (D) post-flood acquired by FORMOSAT-II showing widening river section apparently after Typhoon Mindulle.

Fig. 7. (A) The elevation change of riverbed measured by comparing pre-flood and post-flood DEMs. (B) The sediment-deposited farmland in red derived by change detection on pre-flood and post-flood satellite images.
in which F_d is the impact force of debris per unit area (N/m²), A is contact area (m²), and C is transmission speed of the elastic wave impacting a rock (usually 4000 m/s) (Cui et al., 2005). Field investigation found many cobbles left on the riverbed and many boulders with a diameter of ~0.5 m left in the flooded vineyard (see Figure 5C) which are believed to originally come from the landslide on the left hill. The biggest stones accumulated at the front part of the landslide. Trees at point T sliding 136 m to point T' can be easily identified by comparing (A) with (B). The estimated elevation was derived by the equal mass between sliding and deposited materials.

In general, the design strength of the concrete levee wall (400 kN/m²) is beyond the impact force of water (14.0 kN/m²) but below the impact force of debris (3000 kN/m²). The earthen levee can allow a flow with a maximum velocity of 1.98 m/s. Once a break occurred on the levee surface, a 3.3 m/s flow running through the earthen body caused a hundred-meter long collapse of Shan-An levee.

7. Conclusions

The finding of both field investigation and scientific analysis was concluded as follows.

1. Flood investigation, including field observation with GPS, photogrammetry interpretation, digital photogrammetry, satellite imagery processing, and terrain surveying, was conducted to provide flooding evidences. Through image processing, the pre- and post-flood aerial and satellite images efficiently illustrate an overall picture of flooding severity at Shan-An region (see Figure 6). According to the image analysis, the elevation change of riverbed photogrammetrically measured by comparing pre-flood and post-flood DEMs, and the inundated area was about 157 ha and the debris-deposited farm was about 40 ha (see Figure 7).

2. To reveal quantitatively the water profile, HEC-RAS was employed to simulate hydraulic conditions under rainfall records during the Mindulle flood event. Chenyulan River had a peak flow of 3200 cms (about 10-year return period) at the time when the levee collapse was reported and another peak flow of 4585 cms (about 20-year return period). Both peak flows were under the design capacity of the Shan-An levee (5850 cms, 100-year return period). The HEC-RAS simulation results reveal that the design strength of Shan-An levee is able to resist the peak flow of Mindulle rainfall and should not cause the overtopping and inundation.

3. More importantly, the seismic-triggered landslide on the left riverside was reactivated by intensive rainfalls. A great amount of soils deposited on the river bed and narrowed down the river Section 18 into 20% to increase the impact force on Shan-An levee. As well as an elevated-up flow surface, the flow was diverted 20° toward Shan-An levee by physical obstruction of landslide deposit to induce a severe attack to the earthen levee and to cause the break and eventually levee collapse.

4. The landslide on the left riverside at Section 18 provided a great source of a high concentrated sediment flow. The impact analysis shows that the design strength (400 kN/m²) of Shan-An levee should be able to resist the impact of water but not the impact of debris (~3000 kN/m²).

5. The analysis results suggest that the flow with high concentration of debris increased water pressure to the point that water flowed through the earthen levees with concrete walls. Instead of overtopping, Shan-An levee faced to a catastrophic collapse due to flow scour after the broken concrete wall of levee by debris impact. Once there was a break on the concrete wall, the whole earthen levee was scoured away, which is a typical case of a concrete-surfaced earthen levee collapse.
Acknowledgements

This work was made possible through the thankful help from the 4th River Basin Management Bureau. The topographic data and Lidar image were contributed by Eagles Flying Survey Technology Company. Sincere appreciation also goes to the anonymous reviewers for their constructive comments.

References

