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Abstract

Several literatures presented automated systems for detecting or classifying sewer pipe defects based on morphological features of pipe
defects. In those automated systems, however, the morphologies of the darker center or some uncertain objects on CCTV images are also
segmented and become noises while morphology-based pipe defect segmentation is implemented. In this paper, the morphology-based
pipe defect segmentation is proposed and discussed to be an improved approach for automated diagnosis of pipe defects on CCTV
images. The segmentation of pipe defect morphologies is first to implement an opening operation for gray-level CCTV images to distin-
guish pipe defects. Then, Otsu’s technique is used to segment pipe defects by determining the optimal thresholds for gray-level CCTV
images of opening operation. Based on the segmentation results of CCTV images, the ideal morphologies of four typical pipe defects
are defined. If the segmented CCTV images match the definition of those ideal morphologies, the pipe defects on those CCTV images
can be successfully identified by a radial basis network (RBN) based diagnostic system. As for the rest CCTV images failing to match the
ideal morphologies, the failure causes was discussed so to suggest a regulation for imaging conditions, such as camera pose and light
source, in order to obtain CCTV images for successful segmentation.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Sewage rehabilitation plays an important role during the
maintenance of a sewer system, but is not easily processed
due to the uncertainty of sewer pipe defects. Thus, world-
wide engineers pay a great attention to plan proactive
and preventive repair strategies than the traditional
approach of passive sewage maintenance (Fenner, 2000;
Yang & Su, 2007). Before undertaking sewer rehabilitation
plan, needed are series steps of sewage rehabilitation plan-
ning including sewage inspection, diagnosis of sewer pipe
defects, computation of structural condition grades, and
determination of cost-effectiveness rehabilitation
approaches (Yang & Su, 2006). Various tools or technolo-
gies such as closed circuit television (CCTV) cameras
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mounted on robots, ground piercing radar (GPR), sonar
and infrared thermograph, are developed to assist
engineers in sewage inspection (Fenner, 2000; Gokhale &
Graham, 2004; Makar, 1999).

CCTV usually mounted on robot to be putted inside
sewer pipes from a manhole and remote-controlled outside
to acquire images of inner pipe is the most popular inspec-
tion tool because of its commercial availability (Makar,
1999; Mckim & Sinha, 1999). Acquired CCTV images from
sewage inspection are used for diagnosing pipe defects to
assess sewage structural conditions. However, during a
sewage inspection work a great number of CCTV images
are usually obtained so to be unsuitable for human diagno-
sis of pipe detects due to human’s fatigue, subjectivity,
time-consuming, and high cost (Mckim & Sinha, 1999;
Moselhi & Shehab-Eldeen, 2000; Wirahadikusumah, Abra-
ham, Iseley, & Prasanth, 1998).

Based on the morphological features of sewer pipe
defects, several literatures presented automated systems
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for detection or diagnosis of sewer pipe defects (Moselhi &
Shehab-Eldeen, 1999; Moselhi & Shehab-Eldeen, 2000;
Shehab & Moselhi, 2005). Various sewer pipe defects on
CCTV images are analyzed through different mathematical
morphologies which are widely used for image analysis,
smoothing, segmentation, edge detection, thinning, shape
analysis and coding (Iyer & Sinha, 2005; Sinha & Fieguth,
2006). One of the automated systems used an innovative
technology, called Sewer Pipe Scanner and Evaluation
Technology (SSET), for obtaining images of the interior
of sewer pipes to identify pipe defects (Mckim & Sinha,
1999). Even with an overall accuracy of the automated
SSET system up to 90%, SSET comparative to CCTV is
much less commercialized. Moreover, the quality and reso-
lution of the CCTV image can compare favourably with
the images of an SSET based system if CCTV is used
state-of-the-art technology under ideal conditions (Mckim
& Sinha, 1999).

One of the CCTV imaging problems is that the center
area is always darker than the surrounding areas due to
the fact that the lighting effect vanishes as the distance from
the lighting source gets larger (Moselhi & Shehab-Eldeen,
2000). The shortage of lighting source causes the morphol-
ogy of the mass of dark image region at the center of the
original gray-level CCTV image being segmented, which
increases the difficulty to segment a complete morphology
of pipe defect. Moreover, open joint, joint displacements,
and reductions in the cross-sectional area at the center of
CCTV image are illuminated and would reflect back the
beam of light due to the fact that these pipe defects tend
to protrude from the surface of the pipe as oppose to other
pipe defects such as crack and spalling. Moselhi and She-
hab-Eldeen (2000) and Shehab and Moselhi (2005) pro-
posed neural network technique-based automated systems
for classification of sewer pipe defects and detection of sew-
age infiltration, respectively. First of all, an approach of
morphology segmentation was applied to the CCTV
images. Some of the segmented image regions belong to
pipe defects, while others may belong to sewages or image
background. However, this problem was not discussed in
their literatures. Thus, the segmented image regions which
belong to pipe defects usually need an expertise-based
human diagnosis to be identified before an implementation
of automated diagnosis.

In traditional inspection projects, a CCTV image is
mostly diagnosed into one type of defect rather than multi-
ple types of defects. Yang and Su (in press) presented a
novel diagnostic system in which CCTV images were
implemented by a two-dimensional discrete wavelet trans-
form and computation of co-occurrence matrices to ana-
lyze the texture shown on the CCTV images. The
features of pipe defects were straightly derived from the
texture analyses of CCTV images so that the processes of
feature extraction and classification of pipe defects on
CCTV images can be thoroughly automated. However,
the some inspection notations manually attached on the
original CCTV images become harmful noises so to derive
the extracted textural features of pipe defects with a linear
non-separable relationship for the diagnosis system and to
increase the difficulty of classification. This paper is aimed
to discuss the related problems about morphology-based
pipe defect segmentation on CCTV images as well as to
propose an efficient approach to measure the morphologi-
cal features of pipe defects from CCTV images. First of all,
CCTV images are implemented a morphological segmenta-
tion using a combination of opening operation and Otsu’s
technique. Based on the segmentation results of CCTV
images, the ideal morphologies of four typical pipe defects,
such as broken pipe, crack, fracture, and open joint, are
defined. Secondly, the CCTV images on which the pipe
defects are segmented successfully are selected to be the
experimental materials of a radial basis network (RBN)
technique-based diagnostic system. Finally, the classifica-
tion accuracy and utility of the diagnostic system are
assessed. In this paper, the measured morphological fea-
tures of pipe defects include area, major axis length, minor
axis length, eccentricity, and ratio of major axis length to
minor, which are defined in Appendix (Moselhi & She-
hab-Eldeen, 2000; Shehab & Moselhi, 2005). The frame
of this study is shown as in Fig. 1.

2. Methodology

Some morphological approaches based on set-theoretic
concepts of shape have been successfully applied to many
segmentation problems (Moselhi & Shehab-Eldeen, 1999;
Moselhi & Shehab-Eldeen, 2000; Shehab & Moselhi,
2005; Sinha & Fieguth, 2006). In order to effectively seg-
ment out the pipe defects from CCTV images, morphol-
ogy-based segmentation is adopted. Firstly, implemented
is opening operation, in which erosion immediately fol-
lowed by dilation is applied to a gray-level image using
the same structuring element to distinguish the pipe defect
on a CCTV image better (Gonzalez & Woods, 2002; Par-
ker, 1997). Then, Otsu’s technique is employed to find an
optimal threshold for the opening operated gray-level
image to segment the pipe defect because the technique is
non-parametric, unsupervised, and automatic (Sinha &
Fieguth, 2006). For those successfully segmented pipe
defects, the morphological features are measured and
transformed through a principal component analysis
(PCA) into a substantially smaller set of uncorrelated vari-
ables representing most of the information in the original
extracted morphological features in order to improve the
accuracy of the RBN technique-based diagnostic system
(Duda, Hart, & Stork, 2001; Wang & Paliwal, 2003; Wid-
odo, Yang, & Han, 2007).

2.1. Opening operation

The light and dark portions of an image can be reshaped
or morphed in various ways under a control of a structur-
ing element which can be considered as a parameter to
morphological operation (Sinha & Fieguth, 2006). Dilation
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Fig. 1. Flowchart of a morphology-based pipe defect diagnosis.
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and erosion are the two basic morphological operations
(Dong, 1997). Sets A and B in Z2 are defined to represent
a grey-level image consisting of pixels p(x, y) and a struc-
turing element, respectively:

A ¼ fðx; yÞjpðx; yÞg ð1Þ
B ¼ fðx; yÞjðx; yÞ in structuring elementg ð2Þ
The dilation of A by B, denoted A � B, is the union of all
pixels in A surrounded by the shape of B and is defined as:

A� B ¼ faþ bj for all a 2 A and b 2 Bg ð3Þ

Similarly, the erosion of A by B, denoted AHB, removes all
pixels within a ‘‘distance” B from the edge of A and is
defined as
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AHB ¼ fajbþ a 2 A for every b 2 Bg ð4Þ

The opening operation is defined as

A � B ¼ ðAHBÞ � B ð5Þ

The effect of opening operation is to remove image regions
which are lightly relative to the structuring element while
preserving image regions greater than structuring elements
(Sinha & Fieguth, 2006).

2.2. Otsu’s technique

In this paper, Otsu’s technique is used to transform the
opening operated gray-level CCTV images into the binary
images for segmenting pipe defects. Otsu’s technique,
which is a thresholding method based discriminant analy-
sis, determines the optimal thresholds for the opening oper-
ated gray-level images by maximizing the following
measure of class separability (Yan, 1996):

DðT Þ ¼ P 1ðT ÞP 2ðT Þ½m1ðT Þ � m2ðT Þ�2

P 1ðT Þr2
1ðT Þ þ P 2ðT Þr2

2ðT Þ
; ð6Þ

where

P 1ðT Þ ¼
XT

z¼0

hðzÞ; ð7Þ

P 2ðT Þ ¼
XL�1

z¼Tþ1

hðzÞ ¼ 1� P 1ðT Þ; ð8Þ

m1ðT Þ ¼
1

P 1ðT Þ
XT

z¼0

zhðzÞ; ð9Þ

m2ðT Þ ¼
1

P 2ðT Þ
XL�1

z¼Tþ1

zhðzÞ; ð10Þ

r1ðT Þ ¼
1

P 1ðT Þ
XT

z¼0

½z� m1ðT Þ�2hðzÞ; ð11Þ

r2ðT Þ ¼
1

P 2ðT Þ
XL�1

z¼Tþ1

½z� m2ðT Þ�2hðzÞ; ð12Þ

z is the grey-level of a pixel in the CCTV image and ranges
from 0 through L � 1, h(z) is the normalized grey-level his-
togram of the CCTV image. By maximizing the criterion
function in Eq. (6), the means of the light and dark image
regions can be separated as well as possible and the vari-
ances of the two image regions can be minimized.

2.3. Principal component analysis (PCA)

PCA can be regarded as a classical method of multivar-
iate statistical analysis for reducing the dimension of the
original sets of data (Lillesand & Kiefer, 2000; Polat &
Günes�, 2007; Widodo et al., 2007). A small set of uncorre-
lated variables derived from a transformation of PCA can
be much more easily discriminated than an original lager
set of correlated variables. Thus, this data compression
technique has been widely applied to many fields including
cluster analysis, regression, data compression and pattern
recognition (Widodo et al., 2007).

At first, the d-dimensional mean vector l and d � d

covariance matrix M are computed for the original set of
morphological features of pipe defects P. Then, the eigen-
vector x = ei (i = 1, . . ., d) and associated eigenvalue
k = ki are computed using the following linear equation

Mx ¼ kx ð13Þ

for eigenvalue k, which can be rewritten

ðM� kIÞx ¼ 0; ð14Þ

where I is the identity matrix and 0 is a zero vector. Those d

eigenvectors are sorted by their largest eigenvalue, in which
the first k eigenvectors are remained, and k is the inherent
dimensionality of the subspace representing the most infor-
mation in the original set of morphological features of pipe
defects while the remaining d � k dimensions generally
contain noise (Duda et al., 2001). In common, there are just
a few eigenvectors left for further pipe defect classification.
Next, a d � k matrix A, whose columns consist of the k

eigenvectors, is formed. The representation of data by prin-
cipal components consists of projecting the data onto the
k-dimensional subspace according to

Pt ¼ AtðP� lÞ: ð15Þ
2.4. Radial basis network (RBN) based classification
approach

Currently, back-propagation neural network (BPN),
radial basis network (RBN), and support vector machine
(SVM) are the three commonly used neural networks
(Liao, Fang, & Nuttle, 2004; Yang & Su, in press). Yang
and Su (in press) employed these three neural networks
to diagnose pipe defects based on textural features on
CCTV images. The testing results indicate that BPN needs
the longest computation time but with the lowest accuracy.
SVM and RBN have better classification accuracy, but
SVM needs to determine the best parameters a prior within
the kernel functions based on heuristics at present (Seo,
2007; Yang & Su, in press). Thus, this paper employs the
RBN technique to diagnose pipe defects based on their
morphological features on CCTV images.

RBN is designed based on an unsupervised learning and
a supervised learning (Zhang, Jiang, & Kamel, 2005). At
the stage of unsupervised learning, clustering algorithm is
used to divide all training samples of pipe defects s into
subsets. The number of subsets is set as the number of neu-
rons in the hidden layer of RBN. The characteristic of the
training samples in each subset can be described by radial
basis functions (Gj), one of activation functions, as (Hwang
& Bang, 1997):

Gj ¼
exp

�ks�cjk2

2r2
j

� �
; j ¼ 1; 2; . . . ; nH ;

1 j ¼ 0 ðbais neuronÞ;

8<
: ð16Þ
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where cj and rj are the center and covariance matrix of each
hidden neuron, respectively, which can be determined by
clustering; k � k denotes the Euclidean distance; nH repre-
sents the number of the hidden neurons. At the stage of
supervised learning, a linear weighted sum between the hid-
den and output layers is computed as

zl ¼
XnH

j¼0

Gjwlj ð17Þ

where l denotes the c classes of pipe defects; zl is a linear
weighted sum of the outputs of the hidden neurons; opti-
mal wkl is the solution of this set of linear equations by
feed-forward calculation (Han & Xi, 2004; Liao et al.,
2004; Zhang et al., 2005). A pipe defect pattern is fed into
the trained RBN to be assigned into a certain class of pipe
defect, so the output vector also has a dimension of c � n if
Fig. 2. CCTV images of
n pipe defect patterns are recognized. Within an output
vector, the lth element as a maximum zl represents that this
CCTV image is diagnosed as the lth pipe defect pattern.
3. Experimental materials

A sewer sub-system (called system G) at the 9th district
of Taichung City, which is the largest city in the central
Taiwan, is selected as the study case. The sewer system
was made in Vitrified Clay Pipe (VCP) and built a decade
ago. A CCTV inspection work by manual interpretation
was implemented in 2003 for a reference of rehabilitation
prior to a house-connecting construction, and there were
291 CCTV inspection images including 107 samples of
open joint, 112 samples of crack, 16 samples of broken
pipe, and 56 samples of fracture. The detail of system G
pipe defect samples.
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can be checked in Yang and Su’s (in press). Open joint,
crack, broken pipe, and fracture are the four typical pipe
defects found in the inspection work, and each frame of
CCTV image was only used to record one type of pipe
defect. In this paper, each type of pipe defect is given five
CCTV image samples for pipe defect segmentation due to
their natural shape irregularities and the complex imaging
environment (see Fig. 2). The alphabets, B, C, F, and O,
represent broken pipe, crack, fracture, and open joint,
respectively.
4. Results and discussion

4.1. Opening operation

In Fig. 2 manmade notations of inspection attributes
attached directly on the acquired gray-level CCTV images
can be discovered. During the morphology-based pipe
defect segmentation, the utility of opening operation is
Fig. 3. Testing results of opening operation using
expected not only to smooth the shapes of the notations
but also to remain the original shapes of the pipe defects.
In this paper, a disk structuring element of varying radius
r and a rectangle structuring element of varying width w

and a fixed length l = 5 were adopted in the test of an open-
ing operation, and the illustrations of the two structuring
elements can be referred in MATLAB 6.5 or more
advanced visions. The gray-level CCTV image C1 in
Fig. 2 was selected to be the testing image. The testing
results of opening operation shown in Figs. 3 and 4 reveal
that the larger the size of the structuring element is the bet-
ter the performance of smoothing the shapes of the nota-
tions. Moreover, the disk structuring element of radius
r = 4 or 5 comparative to the rectangle structuring element
of width w = 4 or 5 and a fixed length l = 5 gives a better
smoothing effect. However, if the size of the structuring ele-
ment is too large, the original shape of object will be clearly
deformed (Jang & Chin, 1998). Thus, the disk structuring
element of radius r = 4 is employed in this research.
a disk structuring element of varying radius r.



Fig. 4. Testing results of opening operation using a rectangle structuring element of varying width w and fixed length l = 5.
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4.2. Morphology segmentation of pipe defects

In Fig. 2, debris and roots are the typical characteristics
of broken pipe and fracture, respectively, with irregular
shapes compared to crack and open joint. Cracks can be
simply classified into circumferential crack and longitudi-
nal crack (Water Research Centre, 1994). The shapes of
open joint look like single circle or concentric circles. It
can be found that the line of sight of camera was parallel
to the centroid line of sewer pipe to acquire the gray-level
CCTV images of fracture and open joint (see Fig. 2). As
being mentioned before, the centers of those gray-level
CCTV images are always darker than their surrounding
areas. Similar with the segmentation results of Shehab
and Moselhi (2005), both the segmented binary images of
fracture and open joint in Fig. 5 show that the morpholo-
gies of the masses of dark image regions on the centers of
the original gray-level CCTV images were segmented as
the white image regions while a morphology segmentation
of pipe defect was implemented. Thus, it is necessary but
time-consuming for each segmented binary image to iden-
tify pipe defects in the bright image regions.

Most of the segmented binary images of open joint in
Fig. 5 show that the morphologies of the sewages as well
as those of the masses of dark image regions at the centers
of the original gray-level CCTV images were clearly seg-
mented. However, the segmented open joints usually
accompanied with wastewater or/and the masses of dark
image regions at the centers of the original gray-level
CCTV images so to cause a difficulty to segment a complete
morphology of open joint from an original gray-level
CCTV image. To efficiently measure the morphological
features of pipe defects from the segmented binary images,
this paper gives a novel morphological definition for each
type of pipe defect according to the segmentation results
in Fig. 5. Fig. 6 presents the ideal morphologies of pipe
defects by characterizing broken pipe, crack, fracture,
and open joint as a white circle, an irregular white line, sev-
eral irregular black lines within a white keyhole, and a
white keyhole capped a white arc, respectively. The white



Fig. 5. Segmented binary images of pipe defects of the training set.
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keyhole image region can be regarded as a combination of
a white circle image region resulting from a segmentation
of a mass of dark image region at the center of CCTV
image and a white trapezoid image region resulting from
a segmentation of sewages within pipes. Assuming col-
lapsed debris blockading entire sewer pipes, there is no
white trapezoid image region appearing on the typical illus-
tration of the ideal morphology of broken pipe.

4.3. Failure causes and resolution of ideal morphology

segmentation of pipe defects

The gray-level CCTV images of fracture in Fig. 2 show
that the roots and the surrounding areas of the CCTV
images are much lighter than the centers of the CCTV
images. However, in Fig. 5 the segmented binary images
F3, F4, and F5 show that the morphologies of the thin
roots can not be effectively segmented so to result in a fail-
ure of measuring their morphological features. In Fig. 2,
the reflectance light by debris appearing on the gray-level
CCTV images of broken pipe affected the segmented mor-
phologies of broken pipe. If the reflected light by debris is
much stronger than that by surrounding pipe wall, the
morphology of broken pipe can be completely segmented
that can be revealed by comparing the binary image B4
in Fig. 5. In addition, compared to those of crack and open
joint, the gray-level CCTV images of broken pipe seem to
have locally obvious textures caused by the debris. There-
fore, the segmented binary images of broken pipe in
Fig. 5 show the morphologies of the debris in several white
image regions that would increase the difficulty of auto-
mated measuring the morphological features of broken
pipe.

In Fig. 2, the open joints reflect but the cracks absorb
the exposing light from the CCTV platform. Both the
cracks and open joints can be efficiently segmented from
the original gray-level CCTV images. In other words, the
light reflected back by pipe defects would not interfere a
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Table 1
Morphological features of successfully segmented pipe defects

Pipe
defects

Area Major axis
length

Minor axis
length

Eccentricity Major/minor

Broken
pipe

11025 179.3331 129.7225 0.6905 1.3824
10662 155.0269 105.2767 0.7341 1.4726
8934 145.9232 103.9595 0.7017 1.4037

10941 171.1512 106.1450 0.7845 1.6124
5379 96.3136 73.8643 0.6417 1.3039

Crack 907 97.8161 14.2119 0.9894 6.8827
2182 141.1859 111.7988 0.6107 1.2629
1904 152.8344 24.5892 0.9870 6.2155
841 155.2565 8.7959 0.9984 17.6510
318 158.3682 11.6273 0.9973 13.6204
83 42.6751 6.1486 0.9896 6.9406

558 153.9083 20.6073 0.9910 7.4686
104 99.8998 6.9348 0.9976 14.4056
438 43.6900 17.4418 0.9169 2.5049
202 96.3043 8.0486 0.9965 11.9654
69 40.0425 4.7486 0.9929 8.4325
60 39.6009 8.1370 0.9787 4.8668
72 66.3502 4.7615 0.9974 13.9347

206 111.1348 11.1307 0.9950 9.9845
258 137.0497 11.2996 0.9966 12.1287
126 75.7388 4.8499 0.9979 15.6166
57 33.0237 2.6561 0.9968 12.4331

325 144.7255 13.7188 0.9955 10.5494
419 170.1375 19.9687 0.9931 8.5202
417 138.6845 20.2706 0.9893 6.8417
169 94.5528 5.5906 0.9983 16.9128
83 69.8607 3.5234 0.9987 19.8276

Open
joint

4680 165.3972 69.1441 0.9084 2.3921
9667 130.3706 126.2636 0.2490 1.0325
9831 130.7117 117.5811 0.4368 1.1117
7005 109.6634 94.9257 0.5007 1.1553

14074 163.5757 132.9916 0.5822 1.2300
7597 151.4679 90.9738 0.7995 1.6650

12316 167.5232 148.3640 0.4644 1.1291
10887 147.1307 134.4684 0.4059 1.0942
13754 172.2098 150.0235 0.4910 1.1479
9264 148.2113 121.7512 0.5703 1.2173

12481 163.8687 135.0470 0.5664 1.2134
11139 147.4967 139.6121 0.3226 1.0565
6465 110.1912 90.9229 0.5649 1.2119
8029 128.4295 107.9100 0.5422 1.1901
9157 138.3897 113.7347 0.5697 1.2168
8766 129.6492 116.0195 0.4463 1.1175
8447 140.5758 109.1084 0.6305 1.2884
7098 128.5467 101.0536 0.6181 1.2721
9601 154.0402 111.4404 0.6904 1.3823
7525 151.7261 98.1155 0.7628 1.5464
8279 140.3253 115.9082 0.5637 1.2107
9425 139.6398 128.2848 0.3950 1.0885

12058 174.6893 136.2170 0.6261 1.2824
8746 136.3048 129.3318 0.3157 1.0539
6840 154.7491 127.4175 0.5675 1.2145
9563 141.4691 120.8469 0.5199 1.1706

11849 154.5819 133.8950 0.4997 1.1545
11183 174.9488 146.4154 0.5473 1.1949
10757 177.8374 155.2148 0.4881 1.1458
8248 163.0742 138.4349 0.5285 1.1780
9455 149.0819 130.7129 0.4809 1.1405

14889 167.2766 137.2068 0.5720 1.2192
14206 148.5983 141.2652 0.3103 1.0519
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morphology segmentation of these two patterns of pipe
defects. A slight crack was segmented into two or more
white image regions in the segmented binary images C1
and C5, so an approach of edge linking should be
employed to link the separated white image regions to dis-
play a complete segmented crack. Unfortunately, some
slight crack, such as that shown on the gray-level CCTV
image C2 whose top is obviously lighter than its bottom,
could not be effectively segmented due to the unequal light
sourcing. In conclusion of the above discussions about seg-
mentation failure, most of the pipe defects on CCTV
images can not be segmented completely due to the camera
pose, light sourcing, notations on CCTV images, sewages
within pipes, or other factors.

The binary images, B4, C5, F1, and O5 in Fig. 5, are the
examples on which the morphologies of pipe defects were
segmented successfully. Among the 291 samples of pipe
defects acquired, there were 62 samples of pipe defects
including 5, 22, 2, and 33 samples of broken pipe, crack,
fracture, and open joints, respectively, segmented success-
fully. Because fracture has many failure cases of segmenta-
tion, this paper employs the other 60 pipe defects
segmented successfully for diagnosis of pipe defects. The
morphological features of the 60 pipe defects are listed in
Table 1. Obviously, the areas of broken pipe or open joint
are much larger than those of cracks. The eccentricities of
broken pipe range from 0.6 through 0.8; those of crack are
almost above 0.9, and those of open joint almost range
from 0.3 through 0.6. As for the ratio of major axis length
to minor, those of broken pipe or open joint range from 1.0
through 2.0, but those of cracks due to its long and narrow
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Classification matrix of sewer pipe defects in Experiment I (15 training
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shape are much larger than those of broken pipe or open
joint.
samples)

Classification data Reference data

Broken pipe Crack Open joint Row total

Broken pipe 2 0 0 2
Crack 0 21 0 21
Open joint 3 1 33 37
Column total 5 22 33 60
Producer’s accuracy User’s accuracy
Broken pipe = 40.0% (2/5) Broken pipe = 100.0% (2/2)
Crack = 95.5% (21/22) Crack = 100.0% (21/21)
Open joint = 100.0% (33/33) Open joint = 89.2% (33/37)
Overall accuracy = 93.3%

Table 4
Classification matrix of sewer pipe defects in Experiment II (30 training
samples)

Classification data Reference data

Broken pipe Crack Open joint Row total

Broken pipe 3 0 0 3
Crack 0 21 0 21
Open joint 2 1 33 36
Column total 5 22 33 60
Producer’s accuracy User’s accuracy
Broken pipe = 60.0% (3/5) Broken pipe = 100.0% (3/3)
Crack = 95.5% (21/22) Crack = 100.0% (21/21)
Open joint = 100.0% (33/33) Open joint = 91.7% (33/36)
Overall accuracy = 95.0%
4.4. Diagnosis of pipe defects

To train the diagnostic system, two experiments (I and
II) were given by 15 and 30 pipe defects, which were ran-
domly selected from the 60 pipe defects and implemented
an expertise-based human diagnosis a priori, respectively.
Also, the assignment of training samples saved three quar-
ters and a half of expertise-based human diagnosis in
Experiments I and II, respectively. Regarding to Table 1,
the proportions of broken pipe, cracks, and open joint
are 8.3%, 36.7%, and 55.0%, respectively. Assuming
unequal prior probability, in Experiment I the frames of
training images of broken pipe, cracks, and open joint were
given by 1, 6, and 8, respectively; in Experiment II the
frames of training images of broken pipe, cracks, and open
joint were given by 2, 11, and 17, respectively. Under the
different assignment of training image numbers, both the
accuracy and efficiency of the diagnostic system are
assessed.

Table 1 shows that the original morphological features
of pipe defects is a five-dimensional set of data. Before
inputting the morphological features of pipe defects into
the diagnostic system, the five-dimensional set of data
was transformed by PCA into a two-dimensional set of
uncorrelated variables representing about 95% information
(see Table 2). This two-dimensional set of uncorrelated
variables was analyzed by the diagnostic system and
obtained training accuracies of 100.0% for both Experi-
ments I and II as well as overall accuracies of 93.3% and
95.0%, respectively (see Tables 3 and 4). Due to the insig-
nificant improvement of the overall accuracy in Experi-
ment II comparative to Experiment I, the assignment of
training samples in Experiment I is adequate for the auto-
mated diagnosis of pipe defects.

In addition to the overall accuracy, both of Tables 3 and
4 also list producer’s accuracies and user’s accuracies. Pro-
ducer’s accuracies result from dividing the number of cor-
rectly classified pipe defects in each category (on the major
diagonal) by the number of training set pipe defects used
for that category (the column total); user’s accuracies are
computed by dividing the number of correctly classified
pipe defects in each category by the total number of pipe
defects that were classified in that category (the row total)
(Lillesand & Kiefer, 2000). The proposed diagnostic system
Table 2
Proportion of trace explained

Principal component Variance Cumulative variance

1 0.875 0.875
2 0.077 0.952

3 0.025 0.977
4 0.018 0.995
5 0.005 1.000
can distinguish open joint exactly, whereas it just offers a
user’s accuracy of about 90%. On the contrary, both the
user’s accuracies of broken pipe and cracks are 100%.
However, broken pipe comparative to cracks has a greater
probability to be misdiagnosed into open joint due to its
relative less number of training samples. The acceptable
overall accuracy of above 90% demonstrates that the
defined morphological features of pipe defects have a well
discriminant and will be useful in the further applications
of diagnosis of pipe defects.
5. Conclusions and suggestions

Several automated diagnostic systems based on the mor-
phological features of pipe defects have been developed in
literature, but the systems still need an expertise-based
human diagnosis to identify the image regions of pipe
defects from a segmented binary image for the automated
diagnosis. In order to reduce human effort for automation,
firstly a combination of opening operation and Otsu’s tech-
nique was used for segmenting the morphologies of pipe
defects including broken pipe, cracks, fracture, and open
joint in this paper. Especially, opening operation with a
disk structuring element of radius r = 4 is useful for mostly
smoothing the notations of inspection attributes manually
recorded on CCTV images with the shapes of pipe defects
effectively remained. However, it is found that the combi-
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nation of opening operation and Otsu’s technique for seg-
menting the morphologies of pipe defects is still affected by
camera pose, light sourcing, sewages within pipes, nota-
tions unsmoothed thoroughly, or other factors. If a camera
pose is not adjusted to shoot an approximately flat object
such as the CCTV image C5 in Fig. 2, basically light
sourcing can not be uniformly distributed on the CCTV
image so that the morphology of the pipe defect on the
CCTV image can not be effectively segmented.

Based on the segmentation results in this research, the
ideal morphologies of the four types of pipe defects on
CCTV images were defined (see Fig. 6). Among the 291
samples of pipe defects acquired, 62 samples were seg-
mented successfully to be measured their morphological
features. In this paper, the ideal morphology segmentation
of pipe defects did not be used for diagnosis of fracture
pipe defects due to its high percentage of segmentation fail-
ure. The other 60 success samples including 5, 22, and 33
samples of broken pipe, crack, and open joints, respec-
tively, were used for the automated diagnosis of pipe
defects. There were two experiments (I and II), in which
15 and 30 training samples were given, respectively,
designed to assess the accuracy and efficiency of the diag-
nostic system. The experimental results reveal that the
overall accuracies of Experiments I and II are 93.3% and
95.0%, respectively. Due to the insignificant improvement
of the overall accuracy in Experiment II comparative to
Experiment I, assigning a quarter of all data as training
samples is adequate for the automated diagnosis of pipe
defects that saved the human effort on diagnosing the rest
three quarters of CCTV images. To obtain more CCTV
images with ideal morphology segmentation of pipe
defects, we suggest that a regulation for camera pose and
light source should be systematically established in the fur-
ther inspection works by referring to the CCTV images seg-
mented successfully, such as B4, C5, F1, and O5 in Fig. 2.
In addition, the notations of inspection attributes should
be recorded in a separate management system rather than
direct on CCTV images so to avoid interfering optimal
thresholds while using Otsu’s technique to segment the
morphologies of pipe defects.
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Appendix

Area = area of pipe defect in pixels;
major axis length = length of the major axis of the
‘‘area” refer to above;
minor axis length = length of the minor axis of the
‘‘area” refer to above;
eccentricity = ratio of the distance between foci of
ellipse and its major axis length;
ratio of major axis length to minor = major axis length
(as defined in this Appendix)/minor axis length (as
defined in this Appendix).

References

Dong, P. (1997). Implementation of mathematical morphological opera-
tions for spatial data processing. Computers & Geosciences, 23(1),
103–107.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification.
New York: Wiley.

Fenner, R. A. (2000). Approaches to sewer maintenance: A review. Urban

Water, 2(4), 343–356.
Gokhale, S., & Graham, J. A. (2004). A new development in locating leaks

in sanitary sewers. Tunnelling and Underground Space Technology,

19(1), 85–96.
Gonzalez, R. C., & Woods, R. E. (2002). Digital image processing (2nd

ed.). New Jersey: Prentice Hall.
Han, M., & Xi, J. (2004). Efficient clustering of radial basis perceptron

neural network for pattern recognition. Pattern Recognition, 37(10),
2059–2067.

Hwang, Y. S., & Bang, S. Y. (1997). Recognition of unconstrained
handwritten numerals by a radial basis function neural network
classifier. Pattern Recognition Letters, 18(7), 657–664.

Iyer, S., & Sinha, S. K. (2005). A robust approach for automatic detection
and segmentation of cracks in underground pipeline images. Image and

Vision Computing, 23(10), 921–933.
Jang, B. K., & Chin, R. T. (1998). Morphological scale space for 2D

shape smoothing. Computer Vision and Image Understanding, 70(2),
121–141.

Liao, Y., Fang, S. C., & Nuttle, H. L. W. (2004). A neural network model
with bounded-weights for pattern classification. Computers and Oper-

ations Research, 31(9), 1411–1426.
Lillesand, T. M., & Kiefer, R. W. (2000). Remote sensing and image

interpretation (4th ed.). New York: Wiley.
Makar, J. M. (1999). Diagnostic techniques for sewer systems. Journal of

Infrastructure Systems, 5(2), 69–78.
Mckim, R. A., & Sinha, S. K. (1999). Condition assessment of

underground sewer pipes using a modified digital image process-
ing paradigm. Tunneling and Underground Space Technology, 14(2),
29–37.

Moselhi, O., & Shehab-Eldeen, T. (1999). Automated detection of surface
defects in water and sewer pipes. Automation in Construction, 8(5),
581–588.

Moselhi, O., & Shehab-Eldeen, T. (2000). Classification of defects in sewer
pipes using neural network. Journal of Infrastructure Systems, 6(3),
97–104.

Parker, J. R. (1997). Algorithms for image processing and computer vision.
New York: John Wiley & Sons, Inc.
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