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Abstract

In sewage rehabilitation planning, closed circuit television (CCTV) systems are the widely used inspection tools in assessing sewage
structural conditions for non man entry pipes. Currently, the assessment of sewage structural conditions by manually interpretation on
CCTV images seems inefficient, especially for several thousands of frames in one inspection plan. Also, the assessment work significantly
involves engineers’ eye sight and professional experience. With a purpose of assisting general staffs in diagnosing pipe defects on CCTV
inspection images, a diagnostic system by applying machine learning approaches is proposed in this paper. This research was first to use
image process techniques, including wavelet transform and computation of co-occurrence matrices, for describing the textures of the pipe
defects. Then, three neural network approaches, back-propagation neural network (BPN), radial basis network (RBN), and support vec-
tor machine (SVM), were adopted to classify pipe defect patterns, and their performances were compared and discussed. The diagnostic
system of pipe defects was applied to a sewer system in the 9th district, Taichung City which is the largest city in middle Taiwan. The
result shows that the diagnosis accuracy of 60% derived by SVM is the best and also better than the diagnosis accuracy of 57.4% derived
by a Bayesian classifier.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Sewage rehabilitation plays an important role as sewage
construction but is not easily processed due to uncertainty
of occurrence of sewer pipe defects. Thus, worldwide engi-
neers pay a greater attention to the proactive and preven-
tive repair strategies than the traditional approach of
regular sewer maintenance (Fenner, 2000). Before under-
taking sewer rehabilitation, four major series steps of sewer
rehabilitation planning including inspection of sewage,
assessment of sewage structural conditions, computation
of structural condition grades, and determination of reha-
bilitation methods and substitution materials have to be
finished (Yang & Su, 2006, 2007). Various tools or technol-
ogies such as closed circuit television (CCTV) cameras

mounted on robots, ground piercing radar (GPR), sonar
and infrared thermograph, are developed to assist engi-
neers in sewage inspection (Cordes, Berns, Eberl, Ilg, &
Suna, 1997; Fenner, 2000; Makar, 1999; Moselhi & She-
hab-Eldeen, 1999; Wirahadikusumah, Abraham, Iseley, &
Prasanth, 1998). CCTV, one of the most popular inspec-
tion tools because of its commercial availability, is usually
mounted on robot to be putted inside sewer pipes from a
manhole and remotely-controlled outside to acquire images
of inner pipe (Makar, 1999). In addition, the advantages of
mobile CCTV system include fewer inspectors needed,
more safety-ensured to inspectors, and more detailed data
of distance and slope possibly recorded (Madryas & Przy-
byla, 1998).

Traditionally, pipe defects are generally diagnosed by
human interpretation on CCTV inspection images. It
remains to improve the technology of interpreting an
enormous quantity of CCTV inspection images due to
human fatigue, expertise-dependence, and inefficiency. To
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overcome these limitations, some computer vision systems
based on morphologies or geometries of pipe defects have
been tried (McKim & Sinha, 1999; Moselhi & Shehab-
Eldeen, 1999; Xu, Luxmoore, & Davies, 1998). Sinha and
Fieguth (2006) used mathematical morphology methodol-
ogy for segmentation of pipe defects including crack/hole,
joint, collapse pipe, and lateral, but the method was diffi-
cult to classify those defect patterns into various classes
based on their severity of defects. It was suggested that
the segmented objects have to be further processed to be
classified according to the severity of defects by using other
shape or textural features. This paper attempts to apply
machine learning approaches to develop a diagnostic sys-
tem with better capacity in diagnosing pipe defects based
on textural features instead of morphological or geometri-
cal features.

Like a fingerprint databases, the straightforward
approach is to establish a complete databank, which stores
an enormous amount of CCTV inspection images collected
from many inspection cases. Any inspection image can be
classified into one category of sewage structural conditions
by comparing the defect characteristic with the stored ones.
However, it is almost impossible to establish the databank
due to the natural shape irregularities of sewer pipe defects
and the complex imaging environment. Therefore, this
paper attempts to extract specific principal textural features
of pipe defects from CCTV inspection images acquired in
one inspection mission to train the diagnostic system and
automatically interpret the rest of inspection images based
on supervised learning.

Many researches proposed some efficient approaches to
extraction of textural features. Wunsch and Laine (1995)
concluded wavelet descriptors insensitive to individual
shape variations and better than Fourier descriptors in
shape representation for handprinted characters. Amet,
Ertüzün, and Erçil (2000) used wavelet transform (WT)
and co-occurrence matrices to extract the co-occurrence
features of defective textile fabrics which are powerful in
detecting defects. Moreover, wavelet transform has multi-
resolution technique, so its sub-band decomposition of tree
structure is appropriate for detection of local signal varie-
ties on images. Arivazhagan and Ganesan (2003) presented
that co-occurrence features computed from discrete wave-
let transformed images are useful for texture segmentation.
In this paper, the hybrid use of wavelet transform and co-
occurrence matrices is considered as an effective solution
for the texture analysis of sewage structural conditions.
Based on the extracted co-occurrence features, the diagnos-
tic system could be trained to assign each defect pattern to
a correct category.

At present, pattern recognition techniques commonly
use multilayer neural network and statistic methods such
as Bayesian classifier, maximum likelihood method, and
decision tree. Marchant and Onyango (2003) compared a
Bayesian classifier with a multilayer feed-forward neural
network to a plant/weed/soil discrimination case. The clas-
sification result demonstrated that the Bayesian classifier

outperform the neural network due to its optimization in
the sense of total misclassification error. Unfortunately,
in most actual cases there is rarely a complete knowledge
about the probabilistic structure of the problem. Thus,
the nonparametric methods such as neural networks have
been proposed to be widely applied to many actual pattern
recognition problems (Duda, Hart, & Stork, 2001). Cur-
rently, back-propagation neural network (BPN), radial
basis network (RBN), and support vector machine
(SVM) are the three commonly used neural networks
(Liao, Fang, & Nuttle, 2004) that is adopted in this paper
to solve this classification problem of pipe defect patterns.
The most efficient neural network technique is commended
based on classification performance, and finally the appli-
cation of this diagnostic system to a sewer system in the
9th district, Taichung City, Taiwan is discussed.

2. Methodology

2.1. Wavelet transform

Wavelet transform (WT) is a linear transform developed
from Fourier transform. Unlike Fourier transform whose
basis functions are sinusoids, wavelet transform is based
on small waves, so-called wavelet, of varying frequency
and limited duration so to obtain better resolutions along
frequency scale (Chen, Wang, Yang, & McGreavy, 1999;
Gonzalez & Woods, 2002). In multiresolution analysis
(MRA), a scaling function is to create a series of approxi-
mation of a function or an image; additional functions, i.e.
wavelet functions, are then used to encode the difference in
information between adjacent approximations (Gonzalez
& Woods, 2002). A set of wavelet functions is defined as:

wa;bðxÞ ¼ 2a=2wð2ax� bÞ ð1Þ

for all a, b 2 Z. Z is a set of integers. The scale parameter a

controls stretch or compression of the mother wavelet
function; the translation parameter b is an offset along
the time axis; 2a/2 controls its height or amplitude (Chen
et al., 1999; Gonzalez & Woods, 2002). Obviously a CCTV
image can be regarded as the change of discrete signal
along a two-dimensional (2D) scale. Hence, a 2D discrete
WT (DWT) was proved to be useful for signal or image
processing and pattern recognition (Bashar, Matsumoto,
& Ohnishi, 2003; Hwang et al., 2005). The fast wavelet
transform was considered as a computationally efficient
implementation of the DWT was defined as (Gonzalez &
Woods, 2002):

ua;bðxÞ ¼
X

b

huðbÞuaþ1;bðxÞ; ð2Þ

wa;bðxÞ ¼
X

b

hwðbÞuaþ1;bðxÞ; ð3Þ

where ua,b(x) and wa,b(x) are computed by convolving
ua+1,b(x) with the time-reversed scaling and wavelet vec-
tors, hu(b) and hw(b). In other words, the original function,
ua+1,b(x), is split into a lowpass (approximation compo-
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nent) corresponding to ua,b(x), and a highpass (detail com-
ponent) corresponding to wa,b(x).

Due to the separability of wavelet transform, a 2D-
DWT can be expressed in terms of a number of one-
dimensional transforms (Parker, 1997). Through the
decomposition of 2D-DWT, which is implemented by
consecutive lowpass (L) and highpass (H) filtering through
one-dimensional convolution, the CCTV image can be
divided into an approximation image (LL) by a two-dimen-
sional scaling function, u(x,y), shown as:

uðx; yÞ ¼ uðxÞuðyÞ ð4Þ

and three detail images in horizontal (HL), vertical (LH),
or diagonal (HH) directions by the three two-dimensional
wavelets, wH(x,y), wV(x,y), and wD(x,y), respectively (see
Fig. 1).

wHðx; yÞ ¼ wðxÞuðyÞ; ð5Þ
wVðx; yÞ ¼ uðxÞwðyÞ; ð6Þ
wDðx; yÞ ¼ wðxÞwðyÞ: ð7Þ

At each recurring step of decomposition, the approxima-
tion image is split into the next level of approximation
and detail images until no more valuable information is
obtained.

2.2. Co-occurrence matrices

A co-occurrence matrix is a square matrix in which each
element Mij in row (i) and column (j) directions records a
relative occurrence frequency of a pair of pixels with the
same gray level value separated by a certain pixel distance
in one direction (Amet et al., 2000; Parker, 1997). For
example, the approach of computing a co-occurrence
matrix by one pixel distance in row direction is shown as
Fig. 2. It is notable that the size of co-occurrence matrix
depends on the range of the gray level values of the CCTV
image. In common, there are 14 types of co-occurrence fea-

tures derived from co-occurrence matrices useful for pat-
tern classification (Haralick, Shanmugam, & Dinsten,
1973). However, the relationship between the co-occur-
rence features is not absolutely independent so that the
redundant features would reduce the efficiency of pattern
classification. Through a discriminant analysis, the most
independent co-occurrence features with co-relation coeffi-
cients of less than 0.5 were found as entropy (ENT), corre-
lation (COR), and cluster tendency (CLU), which were
broadly used to describe the textures of objects on images
(Amet et al., 2000; Arivazhagan & Ganesan, 2003; Hwang
et al., 2005; Yao & Li, 2003), and are employed in this
paper to describe the textures of sewer pipe defects and cal-
culated as:

ENT ¼ �
Xn

i¼1

Xn

j¼1

P ij � log P ij; ð8Þ

COR ¼
Pn

i¼1

Pn
j¼1ði � jÞP ij;�lxly

rxry
; ð9Þ

CLU ¼
Xn

i¼1

Xn

j¼1

ði� lx þ j� lyÞ
2 � P ij; ð10Þ

where

P ij ¼
MijPn

i¼1

Pn
j¼1Mij

ð11Þ

lx ¼
Xn

i¼1

Xn

j¼1

i � P ij ð12Þ

ly ¼
Xn

i¼1

Xn

j¼1

j � P ij ð13Þ

rx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

Xn

j¼1

ði� lxÞ
2 � P ij

vuut ð14Þ

ry ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

Xn

j¼1

ðj� lyÞ
2 � P ij

vuut : ð15Þ

2.3. Back-propagation neural network (BPN)

BPN, a popular technique for pattern recognition and
classification (Nolan, 2002), is one of the multilayer neural
networks which usually consist of a three-layer structure:
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Fig. 1. Two-dimensional discrete wavelet transform.
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Fig. 2. Example of a horizontal co-occurrence matrix computation.
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input layer, hidden layer, and output layer. The numbers of
neurons in the input and output layers are given according
to the numbers of co-occurrence features and classes of
pipe defects, respectively. As for the number of hidden
layer neurons, there is no definite number and usually
determined by trial and error (Moselhi & Shehab-Eldeen,
2000). Hidden layer neurons are fully connected to both
input layer and output layer neurons, so the utility of hid-
den layer is to take in the external input or to send out the
network output. Each hidden neuron computes its net acti-
vation based on the weighted sum of the input. Similarly,
each output layer neuron computes its net activation based
on the weighted sum of its net activations of hidden layer
neurons. The type of the net activations between the
input-hidden and hidden-output layers is defined as (Duda
et al., 2001):

net ¼
X

p

X pwp þ w0 ð16Þ

where Xp represents either the co-occurrence features with-
in the input-hidden layers or the activations of the input-
hidden layers within the hidden-output layers; wp is the
interconnection weights; wo is a bias; the subscript p in-
dexes units in the layer. Each neuron within the hidden
and output layers has a nonlinear sigmoid function of its
activation shown as (Duda et al., 2001; Vapnik, 2000):

SgnðnetÞ ¼ tanhðnetÞ ¼ expðnetÞ � expð�netÞ
expðnetÞ þ expð�netÞ

�
1 if net P 0

�1 if net < 0

�
: ð17Þ

During the training process, the optimal weights are esti-
mated by minimizing the Least-mean-square (LMS) be-
tween the desired output tl known a prior and the real
output zl. The LMS algorithm is adopted for evaluating
the training error and expressed as

JðwÞ ¼ 1

2

Xc

l¼1

ðtl � zlÞ2; ð18Þ

where c is the length of the output vectors; w represents all
the weights in the network. Consequently, the basic ap-
proach of training a multilayer neural network is to input
the training patterns of pipe defects to the input layer
and to determine the assigned classes at the output layer
via the network. The learning rule of BPN is to adjust
the weights using the gradient descent of LMS for the sig-
moid approximation of neural network. Initially, the
weights are given randomly and adjusted in a direction
by the chain rule for differentiation of J(w) which involves
two learning parameters, learning rate (g) and momentum
factor (h). Learning rate controls the relative size of the
adjustment in weights. A large learning rate speeds up
the rate of gradient descent, but decreases the stability of
the network. Momentum factor is used to dynamically
adapt the learning rate so that the danger of instability

could be avoided and the convergence performance could
be improved (Duda et al., 2001; Vapnik, 2000).

During BPN operation, the difference signal (t–z) is
propagated backward through the network to adjust the
weights using the gradient of LMS for the sigmoid approx-
imation of neural network. The output vector has a dimen-
sion of c · n, if n frames of CCTV images are inspected.
Within an output vector, the lth element as ‘‘1’’ represents
that this CCTV image is diagnosed as the lth defect pat-
tern. Once the multilayer neural network is well trained
through the above procedure, the intelligent diagnostic sys-
tem of sewer pipes is ready for the recognition of pipe
defect on a CCTV inspection image.

2.4. Radial basis network (RBN)

RBN, one of three-layer neural networks, is almost same
as BPN, but with weights between the hidden and output
layers. There are two stages, i.e. unsupervised learning
and supervised learning, for training RBN (Zhang, Jiang,
& Kamel, 2005). At the stage of unsupervised learning,
clustering algorithm is used to divide all training samples
of pipe defects s into subsets. The number of subsets is
set as the number of neurons in the hidden layer of
RBN. The characteristic of the training samples in each
subset can be described by radial basis functions (Gj), one
of activation functions, as (Hwang & Bang, 1997):

Gj ¼
exp

�ks�cjk2

2r2
j

� �
; j ¼ 1; 2; . . . ; nH;

1 j ¼ 0 ðbais neuronÞ;

8<
: ð19Þ

where cj and rj are the center and covariance matrix of each
hidden neuron, respectively, which can be determined by
clustering; kÆk denotes the Euclidean distance; nH repre-
sents the number of the hidden neurons. At the stage of
supervised learning, a linear weighted sum between the hid-
den and output layers is computed as:

zl ¼
XnH

j¼0

Gjwlj; ð20Þ

where l denotes the c classes of pipe defects; zl is a linear
weighted sum of the outputs of the hidden neurons; opti-
mal wkl is the solution of this set of linear equations by
feed-forward calculation (Han & Xi, 2004; Liao et al.,
2004; Zhang et al., 2005). A pipe defect pattern is fed into
the trained RBN to be assigned into a certain class of pipe
defect, so the output vector also has a dimension of c · n, if
n pipe defect patterns are recognized. Within an output
vector, the lth element as a maximum zl represents that this
CCTV image is diagnosed as the lth pipe defect pattern.

2.5. Support vector machine (SVM)

SVM is a special type of feed-forward neural network.
Given a set of training samples consisting of pairs of co-
occurrence feature vector and class of pipe defect labels
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as (Xi, Yi), in which the subscript i indexes the lengths of
the vectors (Yi 2 {1,�1}, Xi 2 Rn), the training approach
of SVM is to adjust the weights x and biases b (b 2 R) to
search an optimal hyperplane and maximum margin which
is defined as the distance of the closest vectors in both clas-
ses to the hyperplane. To find this hyperplane the following
quadratic programming problem has to be solved (Schol-
kopf & Smola, 2002).

Min /ðxÞ ¼ 1

2
ðx � xÞ ¼ 1

2
kxk2

; ð21Þ

s:t: Y i½ðX i � xÞ þ b�P 1 for all i ¼ 1; . . . ;N : ð22Þ

However, it is difficult to straightforwardly solve the above
primal model. Based on the duality theorem, the primal
model can be transformed as the following dual model by
modifying Eq. (21) with more convenience. To derive the
dual problem, the Lagrangian is introduced,

Max Lðx; b; kÞ ¼ 1

2
kxk2 �

XN

i¼1

kifY i½hX i � xi þ b� � 1g;

ð23Þ

where ki is Lagrange multipliers. A maximum L must sat-
isfy the following conditions by applying a first-order der-
ivation to Eq. (23) respective to b and x as,

oLðx; b; kÞ
ob

¼
X

i

k0
i Y i ¼ 0; k0

i P 0; ð24Þ

oLðx; b; kÞ
ox

¼
X

i

Y ik
0
i X i ¼ x0; k0

i P 0: ð25Þ

Only the Lagrange multipliers are non-zero at the saddle
point and precisely meet the constraints of Eq. (22) as,

ki½Y iðhX i � xi þ bÞ � 1� ¼ 0 for all i ¼ 1; . . . ;N : ð26Þ

The patterns Xi for which ki > 0 are also called support vec-
tors (SVs) which lie exactly on the margin (see Fig. 3), and
all remaining training samples satisfy automatically their
constraints Eq. (22). Substituting the conditions for Eqs.
(24) and (25) into the Lagrangian Eq. (23), the following
dual form is obtained as

Max Lpðx; b; kÞ ¼
X

i

ki �
1

2

X
i;j

Y iY jkikjhX i � X ji: ð27Þ

In pattern recognition, a decision function, which cor-
rectly classifies the labeled samples (Xi, Yi), is defined as
(Scholkopf & Smola, 2002):

fx;bðX Þ ¼ sgnðhx � X i þ bÞ: ð28Þ

The way to find a large margin hyperplane for the linearly
separable data by solving the above dual optimization
problem is addressed above. However, to make SVM
appropriate for real-world decision surfaces, several ker-
nels are used to nonlinearly map the input data, Xi, from
a sample space into a high-dimensional feature space where
the implementation of linear separation becomes much eas-
ier (Cristianini & Shawe-Taylor, 2000; Vapnik, 2000). In

this paper, well known kernel functions, radial Gaussian
and polynomial, are used as (Brudzewski, Osowski, &
Markiewicz, 2004; Scholkopf & Smola, 2002; Vapnik,
2000):

Radial Gaussian : KðX ;X iÞ ¼ expð�kX � X ik2
=2r2Þ;

ð29Þ
Polynomial : KðX ;X iÞ ¼ ðX T � X i þ cÞd ; ð30Þ

where K is kernel function; r is the width of Xi; r is con-
stant; d is the degree of polynomial.

A complete binary classification, where a class is labeled
as either +1 or �1, has been discussed previously. Whereas,
the pattern recognition of sewer pipe defects, one of many
real-world problems, has more than two classes. Four
methods including one versus the rest (also called one
against all), pairwise classification, error-correcting output
coding, and multi-class objective functions are able to deal
with this issue (Scholkopf & Smola, 2002). One versus the
rest, the most widely used by a set of binary c-class classi-
fiers (Liao et al., 2004; Zheng, Li, & Song, 2004), repeats
binary classifications to a multi-class object according to
the maximal output (Scholkopf & Smola, 2002).

3. Study site and experimental materials

Water Research Centre (WRc) in UK categorizes major
sewer pipe defects into 10 classes including open joint, dis-
placed joint, crack, fracture, broken pipe, hole, collapse,
spalling, wear, and deformation (Water Research Centre,
1993). This categorization rule has been widely applied to
many sewage inspections and also to this study case. The
recent inspection work was implemented in 2002 prior to
a connection house program for the study site. Thousand
frames of the CCTV inspection images were acquired and
processed using 2D-DWT and computation of co-occur-
rence matrices described as follows.

Hyperplane

Positive Class

Margin

Negative Class

Support Vectors

[ ] 1** =+⋅ bXY
ii

ω[ ] 1** −=+⋅ bXY
ii

ω

[ ] 0** =+⋅ bXY
ii

ω

ω

Fig. 3. Classification of two classes using SVM.
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3.1. Study site

The sewage in the 9th district of Taichung city, the larg-
est city in the central Taiwan, consists of ten sewer systems,
system A through J. The diameters of most pipelines are
300 mm and 85% of pipes are made of vitrified clay pipe
(VCP). The other pipelines with diameters larger than
350 mm are made of reinforced concrete pipe (RCP). In
2002, the CCTV inspection work provides engineers 1101
CCTV inspection images for diagnosing the sewer pipe
defects. The diagnosis result revealed that most of the
detected pipe defects existed within system G so that in this

paper it was selected to be the study site for demonstration.
In system G, there were 291 CCTV inspection images
acquired. A statistics for the 291 CCTV images reveals that
open joint, crack, broken pipe, and fracture are the typical
sewer pipe defects, and appears on CCTV images 107, 112,
16, and 56 times, respectively.

3.2. Experimental materials

The techniques of 2D-DWT and co-occurrence matrices
were used to extract the textural features of the pipe
defects. A 2-level 2D-DWT was used to divide each of

Fig. 4. 2-level 2-D wavelet transformation of the inspection images. (a) Approximation sub image (b) detail sub image in horizontal direction (c) detail sub
image in vertical direction (d) detail sub image in diagonal direction.
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the 291 inspection images into four detail images including
approximation sub image, horizontal detail sub image, ver-
tical detail sub image, and diagonal detail sub image (see
Fig. 4). Generally, distances of one pixel in the directions
of 0�, 90�, and 45� and 135� are used to extract the co-
occurrence features from the horizontal, vertical, and diag-
onal detail sub-images, respectively (Lohmann, 1995). In
other words, the co-occurrence features in four orienta-
tions can be extracted from a CCTV image for the pipe
defect. The co-occurrence feature in each orientation con-
sists of entropy (ENT), correlation (COR), and cluster ten-
dency (CLU). Thus, the average values of ENT, COR, and
CLU in the four orientations were computed, respectively,

to represent the textural feature of pipe defect. The data
scatters of ENT vs. COR, ENT vs. CLU, and COR vs.
CLU for the four pipe defects are shown as Figs. 5–7,
respectively. These figures show that the extracted textural
features have a large overlap among the four pipe defects.
Thus, this pattern recognition problem is also a linearly
non-separable problem.

Generally, training samples are either randomly selected
among all patterns if all prior probabilities are equal or
uniformly selected for each class if all prior probabilities
are unknown so to avoid any selection bias (Brudzewski
et al., 2004; Shehab & Moselhi, 2005; Shin, Lee, & Kim,
2005). Statistically, the number distribution of acquired

Fig. 4 (continued)
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CCTV images in four pipe defects has a great difference. In
the G sewer system, the pipe defect of broken pipe appears
on 16 CCTV images only, which is comparatively less than
the other pipe defects. Thus, two experiments (I and II)
were designed to select 40 training images for the diagnos-
tic system. In Experiment I, the training sample of each

pipe defect pattern was assigned 10 images by assuming
equal prior probability. Assuming unequal prior probabil-
ity, Experiment II selected the training samples (also 40
images) of each pipe defect pattern based on its group size
among the 291 images. Regarding to the sewage in the 9th
district, the proportions of open joint, crack, broken pipe,
and fracture are 36.8%, 38.5%, 5.5%, and 19.2%, respec-
tively. Consequently, in Experiment II the numbers of
training images of open joint, crack, broken pipe, and frac-
ture were given by 15, 15, 2, and 8, respectively.

4. Implementation results and discussion

The concept of the diagnostic system proposed in this
paper is shown as Fig. 8. The diagnosis performances of
the three types of neural networks, BPN, RBN, and
SVM, on pipe defects were compared with a discriminant
analysis. Due to an expertise-based interpretation on the
291 CCTV images, four defect patterns can be discrimi-
nated by Bayesian classifier. BPN was established based
on a supervised and LMS- correcting algorithm. The learn-
ing rate and momentum factor were set as g = 0.5 and
h = 0.999t in which t represents the number of iterations
(t = 10,000 in this paper to dynamically adapt g to 0 in
the final iteration). According to trial-and-error results,
the hidden layer of BPN was given by three neurons. The
computation took about 450 s on Pentium IV 1.3G PC to
obtain the classification result shown in Table 1. Compared
with the classification result of Experiments I, the Experi-
ment II has an overall accuracy of 54.6%, which is better
than that (47.4%) of Experiment I. In Experiment II, the
classification accuracy of the diagnostic system for pipe
defects seems to vary with the number of training samples.
The classification accuracy of broken pipe is zero that
could result from a poor training due to comparatively less
occurrence to other sewage defects.

RBN took about 0.1 s on Pentium IV 1.3G PC for the
classification. Table 2 shows that the overall accuracy of
Experiment II is also better than Experiment I. In Experi-
ment II, the classification accuracy of each pipe defect
seems to have a positive correlation with its proportion
among the 291 CCTV images. Comparing Tables 1 and
2, there are three important results found from the experi-
ments. Firstly, regarding to classification efficiency RBN
performed much better than BPN due to taking extremely
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short computation time. Secondly, RBN offered a better
classification accuracy of 25% than BPN in the class of bro-
ken pipe in Experiment II. Thirdly, the overall accuracies in
Experiment II are higher than Experiment I. In conclusion,
RBN in Experiment II can perform the best classification.

SVM, a new classification method developed by Vapnik
in 1999, finds an optimal hyperplane, which is orientated in
such way that the margin is maximized, between any two
classes (Liao et al., 2004; Vapnik, 2000). A less number
of support vectors, usually about 10–30% of the total num-
ber of training samples, is expected so that the trained
SVM could have a better generalization ability (Tran,
Zhang, & Li, 2003). Originally SVM was designed for solv-
ing the problem of binary classification only (Liao et al.,
2004), but recently has been modified for multi-classifica-
tion, such as the problem of pipe defect diagnosis in this
paper, by applying a ‘‘one against all’’ method (Liao
et al., 2004).

Suitable for a linearly non-separable problem, SVM
with either the radial Gaussian kernel or the polynomial
kernel are applied to the automated classification of defect
patterns. The parameters of the kernels affect the classifica-
tion accuracies (Vapnik, 2000), and are determined based
on heuristics during SVM training (Seo, 2007; Widodo,
Yang, & Han, 2007). SVM took about one second on Pen-
tium IV 1.3G PC for Experiments I and II to obtain clas-
sifications shown as Tables 3 and 4, respectively.
Comparing Tables 3 with 4, SVM classification with differ-
ent kernel functions obtained similar overall accuracies,
whereas overall accuracies appear quite different and
depend on the selection of training samples. Moreover,
these testing results demonstrate that the obtained classifi-
cation accuracy of each pipe defect in Experiment II is less
affected by the selection of kernel functions than that in
Experiment I.

The acquired numbers of support vectors in Experi-
ments I and II are given in Tables 5 and 6, in which the

ratios of the total support vectors to samples are either
within the acceptable range of 10–30% or approximately
10%. Basically SVM in Experiments I or II could be trained
to be with superior generalization ability. With SV ratios
over 50.0% (see Table 5), the defect pattern of broken pipe
classified by SVM in Experiment I was over fitted due to
relative less samples. Comparing the classification perfor-
mances of RBN and SVM in Experiment II (see Tables 2
and 4), it can be found that the overall accuracies of
SVM are little better than RBN. As for the efficiencies of
classification, RBN or SVM both took an extremely short

Table 1
Classification accuracy of sewer pipe defects using the BPN classifier

Pipe defects Experiment I (%) Experiment II (%)

Open joint 35.5 66.4
Crack 24.1 67.8
Broken pipe 43.8 0.0
Fracture 67.9 21.4

Overall 47.4 54.6

Table 2
Classification accuracy of sewer pipe defects using the RBN classifier

Pipe defects Experiment I (%) Experiment II (%)

Open joint 30.0 68.2
Crack 35.7 57.1
Broken pipe 68.8 25.0
Fracture 50.0 28.6

Overall 38.1 54.0

Table 3
Classification accuracy of sewer pipe defects using the SVM classifier in
Experiment I

Pipe defects Polynomial (d, r) = (5, 3.3) (%) Radial Gaussian
r = 0.5 (%)

Open joint 46.7 11.2
Crack 40.2 90.2
Broken pipe 87.5 50.0
Fracture 48.2 28.6

Overall 46.7 47.1

Table 4
Classification accuracy of sewer pipe defects using the SVM classifier in
Experiment II

Pipe defects Polynomial (d, r) = (3, 1.2) (%) Radial Gaussian
r = 0.3 (%)

Open joint 73.8 76.6
Crack 62.5 58.0
Broken pipe 18.8 18.8
Fracture 35.7 23.2

Overall 60.0 56.0

Table 5
Numbers of support vectors (SV) in Experiment I

Pipe defects Polynomial (d, r) = (5, 3.3) Radial Gaussian r = 0.5

No. of SV % of SV No. of SV % of SV

Open joint 12 11.2 7 6.5
Crack 16 14.3 3 2.7
Broken pipe 14 87.5 8 50.0
Fracture 14 25.0 8 14.3

Total 56 19.2 26 8.9

Table 6
Numbers of support vectors (SV) in Experiment II

Pipe defects Polynomial (d, r) = (3, 1.2) Radial Gaussian r = 0.3

No. of SV % of SV No. of SV % of SV

Open joint 9 8.4 7 6.5
Crack 10 8.9 9 8.0
Broken pipe 6 37.5 4 25.0
Fracture 7 12.5 7 12.5

Total 32 11.0 27 9.3
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time for computation. In conclusion, RBN or SVM in
Experiment II could obtain better classification results for
the pattern recognition of sewer pipe defects.

In order to verify the classification performance of the
diagnostic system, a discriminant analysis based on Bayes-
ian theory was done for the 291 sewer pipe images through
the feature vector [ENT, COR, CLU]. The analysis result
shown as Table 7 shows that the overall accuracy of
57.4% is extremely close to the overall accuracies obtained
by the SVM. The overall accuracy of 60.0% obtained by
the SVM with the Polynomial kernel is even better than
the discriminant analysis result.

5. Conclusions

Neural networks, BPN, RBN, and SVM, have been
applied to many classification problems, but only BPN ever
was applied to the detection and classification of pipe
defects. This paper is the first trial to apply RBN and
SVM to the diagnosis of sewer pipe defects. As input ele-
ments to BPN, RBN, and SVM, the textural feature vec-
tors consisting of the average ENT, COR, and CLU
extracted by 2D-DWT and co-occurrence matrices were
adopted to represent the texture information of sewer pipe
defects on the CCTV images. The larger the size of co-
occurrence matrix is, the more computation time takes.
In this paper, 291 frames of CCTV inspection images of
sewer system G in the 9th district of Taichung City were
used to implement the automated classification of sewage
structural conditions. On Pentium IV 1.3G PC, the testing
result shows that about 60 s are required for a defect pat-
tern to obtain co-occurrence features.

Two experiments were designed to verify the diagnostic
system due to the great difference of the acquired images
numbers between different pipe defect patterns. The testing
results reveal that Experiment II, in which the training
sample number of each pipe defect pattern was decided
based on its group size, is more suitable for the diagnostic
system. Based on these experiments, an automated diagno-
sis of sewer pipe defects should be firstly implemented an
expertise-based human diagnosis to a portion of all the

CCTV images (about 1/7 of all images or 40 images sug-
gested in this paper) for the neural network training. Sub-
sequently, the diagnose system can be applied to the rest of
CCTV images. In addition, it is found that the performance
of the diagnostic system using either SVM or RBN is better
than BPN. Especially for SVM, however, the best parame-
ters within the kernel functions are usually determined
based on heuristics at present. Some literatures suggested
that a structured method of selecting the best learning
parameters in SVM should be developed for the best clas-
sification performance (Seo, 2007).

To compare the best accuracy (60%) resulted form
SVM, a Bayesian classifier based on discriminant analysis
was also used to diagnose the 291 pipe defect images and
obtained an accuracy of 57.4% that proves the utility of
the diagnostic system. Some textures of inspection attri-
butes manually recorded on the original CCTV images
(see Fig. 4) become harmful noises so to derive the
extracted textural features of pipe defects with a linear
non-separable relationship for the automated diagnosis
and to increase the difficulty of classification. If the textural
features of pipe defects are extracted from pure CCTV
images without inspection records attached, the diagnosis
accuracy should be increased. However, the accuracy of
the automated diagnosis for sewer pipe defects remains to
be improved for practical application in the future work.
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